Silvia Fluhr

  • Citations Per Year
Learn More
Aberrant DNA methylation at specific genetic loci is a key molecular feature of juvenile myelomonocytic leukemia (JMML) with poor prognosis. Using quantitative high-resolution mass spectrometry, we identified RASA4 isoform 2, which maps to chromosome 7 and encodes a member of the GAP1 family of GTPase-activating proteins for small G proteins, as a recurrent(More)
Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative neoplasm of childhood whose clinical heterogeneity is only poorly represented by gene sequence alterations. It was previously shown that aberrant DNA methylation of distinct target genes defines a more aggressive variant of JMML, but only few significant targets are known so far. To get a(More)
Juvenile myelomonocytic leukemia is a clonal malignant disease affecting young children. Current cure rates, even with allogeneic hematopoietic stem cell transplantation, are no better than 50%-60%. Pre-clinical research on juvenile myelomonocytic leukemia is urgently needed for the identification of novel therapies but is hampered by the unavailability of(More)
A-kinase anchor protein 12 (AKAP12) is a regulator of protein kinase A and protein kinase C signaling, acting downstream of RAS. Epigenetic silencing of AKAP12 has been demonstrated in different cancer entities and this has been linked to the process of tumorigenesis. Here, we used quantitative high-resolution DNA methylation measurement by MassARRAY to(More)
Increased levels of fetal hemoglobin (HbF) are a hallmark of more than half of the children diagnosed with juvenile myelomonocytic leukemia (JMML). Elevated HbF levels in JMML are associated with DNA hypermethylation of distinct gene promoter regions in leukemic cells. Since the regulation of globin gene transcription is known to be under epigenetic(More)
  • 1