Silvia Fischer

Learn More
Formation of cerebral oedema caused by vascular leakage is a major problem in various injuries of the CNS, such as stroke, head injury and high-altitude illness. A common feature of all these disorders is the fact that they are associated with tissue hypoxia. Hypoxia has therefore been suggested to be an important pathogenic factor for the induction of(More)
In vivo, hypoxia is known to damage the blood-brain barrier (BBB) leading to the development of vasogenic brain edema. Primary cultures of porcine brain derived microvascular endothelial cells were used as an in vitro BBB model to evaluate the mechanisms by which hypoxia regulates paracellular permeability. Paracellular passage across endothelial cell(More)
In this study, an in vitro model of the blood-brain barrier, consisting of porcine brain-derived microvascular endothelial cells (BMEC), was used to evaluate the mechanism of hypoxia-induced hyperpermeability. We show that hypoxia-induced permeability in BMEC was completely abolished by a neutralizing antibody to vascular endothelial growth factor (VEGF).(More)
The release of endogenous noradrenaline and its deaminated metabolite dihydroxyphenylglycol in the myocardium have been studied in the isolated perfused heart of the rat subjected to three models of energy depletion: ischemia, anoxia, and cyanide intoxication. Anoxia and cyanide intoxication were combined with substrate deficiency at constant perfusion(More)
Natural adaptation to femoral artery occlusion in animals by collateral artery growth restores only approximately 35% of adenosine-recruitable maximal conductance (C(max)) probably because initially elevated fluid shear stress (FSS) quickly normalizes. We tested the hypothesis whether this deficit can be mended by artificially increasing FSS or whether(More)
We investigated the paracrine effect of cardiac microvascular endothelial cells (MVEC) on cultured adult rat cardiomyocytes (ARC). ARC were exposed for 8 days to serum-free medium (CM) conditioned by MVEC. Controls were grown in FCS or FCS-free medium. Protein synthesis of CM-stimulated ARC increased twofold versus 5% FCS-stimulated cells until day 8.(More)
We report an investigation on the influence of high frequency electromagnetic fields (EMF) on the permeability of an in vitro model of the blood-brain barrier (BBB). Our model was a co-culture consisting of rat astrocytes and porcine brain capillary endothelial cells (BCEC). Samples were characterized morphologically by scanning electron microscopy and(More)
Despite optimal therapy, the morbidity and mortality of patients presenting with an acute myocardial infarction (MI) remain significant, and the initial mechanistic trigger of myocardial "ischaemia/reperfusion (I/R) injury" remains greatly unexplained. Here we show that factors released from the damaged cardiac tissue itself, in particular extracellular RNA(More)
An in vitro model of the blood-brain barrier (BBB) consisting of porcine brain derived microvascular endothelial cells (BMEC) seeded onto collagen-coated polycarbonate membranes was used to investigate the effects of the barbiturates, methohexital and thiopental, on permeability properties of the endothelial cell monolayer under hypoxia. The permeability of(More)
Upon vascular injury or tissue damage, the exposed intracellular material such as nucleic acids, histones and other macromolecules may come into contact with vessel wall cells and circulating blood cells and may thus, have an enduring influence on wound healing and body defence processes. This short review summarizes recent work related to extracellular DNA(More)