Learn More
Of the endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG) have received the most study. A functional interaction between these molecules has never been described. Using mouse brain slices, we found that stimulation of metabotropic glutamate 5 receptors by 3,5-dihydroxyphenylglycine (DHPG) depressed inhibitory transmission in the(More)
Exposure to stressful events has a myriad of consequences in animals and in humans, and triggers synaptic adaptations in many brain areas. Stress might also alter cannabinoid-receptor-mediated transmission in the brain, but no physiological study has addressed this issue so far. In the present study, we found that social defeat stress, induced in mice by(More)
BACKGROUND Structural and functional neuroimaging studies suggest abnormal activity in the striatum of patients with the fragile X syndrome (FXS), the most common form of inherited mental retardation. METHODS Neurophysiological and immunofluorescence experiments in striatal brain slices. We studied the synaptic transmission in a mouse model for FXS, as(More)
Neurodegeneration is the irremediable pathological event occurring during chronic inflammatory diseases of the CNS. Here we show that, in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, inflammation is capable in enhancing glutamate transmission in the striatum and in promoting synaptic degeneration and dendritic spine(More)
Multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) are chronic diseases of the central nervous system (CNS), featured by a complex interplay between inflammation and neurodegeneration. Increasing evidence supports the involvement of the endocannabinoid system (ECS) in both inflammatory and neurodegenerative processes typical of these(More)
Voluntary exercise is beneficial in models of primarily neurodegenerative disorders. Whether exercise also affects inflammatory neurodegeneration is unknown. In the present study, we evaluated the clinical, synaptic and neuropathological effects of voluntary wheel running in mice with myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune(More)
The ability of cannabinoids to modulate both inflammatory and degenerative neuronal damage prompted investigations on the potential benefits of such compounds in multiple sclerosis (MS) and in animal models of this disorder. Here we measured endocannabinoid levels, metabolism and binding, and physiological activities in 26 patients with MS (17 females, aged(More)
Since their discovery in the mammalian CNS, D-aspartate and D-serine have aroused a strong interest with regard to their role as putative neuromodulatory molecules. Whereas the functional role of D-serine as an endogenous coagonist of NMDA receptors (NMDARs) has been elucidated, the biological significance of D-aspartate in the brain is still mostly(More)
Synaptic rearrangements in the peri-infarct regions are believed to contribute to the partial recovery of function that takes place after stroke. Here, we performed neurophysiological recordings from single neurons of rats with permanent occlusion of the middle cerebral artery (pMCAO) during the resolution of their neurological deficits. Our results show(More)
BACKGROUND One of the earliest neurochemical alterations observed in both Huntington's disease (HD) patients and HD animal models is the dysregulation of the endocannabinoid system, an alteration that precedes the development of identifiable striatal neuropathology. How this alteration impacts striatal synaptic transmission is unknown. METHODS We measured(More)