Learn More
PURPOSE To develop a reliable technique for diffusion imaging of the human spinal cord at 1.5 Tesla and to assess potential differences in diffusion anisotropy in cross-sectional images. MATERIALS AND METHODS A single-shot echo-planar imaging sequence with double spin-echo diffusion preparation was optimized regarding cerebrospinal fluid artifacts,(More)
A multiple spin-echo (MSE) sequence has been applied for the first time to study trabecular bone ex vivo. The second echo generated by the demagnetizing field presents discrete drops in signal intensity for certain values of the pitch of the magnetization helix created by the correlation gradient. These dips may reflect characteristic pore sizes in the(More)
The departure from purely mono-exponential decay of the signal, as observed from brain tissue following a diffusion-sensitized sequence, has prompted the search for alternative models to characterize these unconventional water diffusion dynamics. Several approaches have been proposed in the last few years. While multi-exponential models have been applied to(More)
We report a simple and efficient MR method for the evaluation of trabecular bone quality. This technique is based on detection and imaging of Multiple Spin-Echoes (MSE), a manifestation of the dipolar field generated by residual intermolecular dipolar couplings in liquids. In the particular implementation we have used, originally proposed by Bowtell [J.(More)
Spatial susceptibility variations of body components lead to local gradients of the static magnetic field. Effects of such background gradients on fractional diffusion anisotropy (FA) measurements on whole-body magnetic resonance units operating at 1.5, 3.0 and 7.0 T were analyzed theoretically and experimentally. Analytical expressions were derived for the(More)
One of the main limitations for BNCT effectiveness is the insufficient intake of (10)B nuclei within tumour cells. This work was aimed at investigating the use of L-DOPA as enhancer for boronophenylalanine (BPA) uptake in the C6 glioma model. The investigation was first performed in vitro, and then extended in vivo to the animal model. BPA accumulation in(More)
A new method to investigate anomalous diffusion in human brain, inspired by the stretched-exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of anomalous diffusion indices to characterize white matter(More)
UNLABELLED We assessed the potential of diffusion tensor imaging (DTI) in combination with proton magnetic resonance spectroscopy (1H-MRS), in cancellous bone quality evaluation of the femoral neck in postmenopausal women. INTRODUCTION DTI allows for non-invasive microarchitectural characterization of heterogeneous tissue. In this work we hypothesized(More)
PURPOSE Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on (10)B(n,alpha)(7)Li reaction, for the treatment of malignant gliomas. One of the main limitations for BNCT effectiveness is the insufficient intake of (10)B nuclei in the tumor cells. This work was aimed at investigating the use of L-DOPA as a putative enhancer for(More)
Nowadays Nuclear Magnetic Resonance diffusion (dNMR) measurements of water molecules in heterogeneous systems have broad applications in material science, biophysics and medicine. Up to now, microstructural rearrangement in media has been experimentally investigated by studying the diffusion coefficient (D(t)) behavior in the tortuosity limit. However, this(More)