Silvia Álvarez-Cubela

  • Citations Per Year
Learn More
MicroRNAs regulate gene expression by inhibiting translation or inducing target mRNA degradation. MicroRNAs regulate organ differentiation and embryonic development, including pancreatic specification and islet function. We showed previously that miR-7 is highly expressed in human pancreatic fetal and adult endocrine cells. Here we determined the(More)
The possibility of using human embryonic stem (hES) cell-derived β cells as an alternative to cadaveric islets for the treatment of type 1 diabetes is now widely acknowledged. However, current differentiation methods consistently fail to generate meaningful numbers of mature, functional β cells. In order to address this issue, we set out to explore the role(More)
Islet transplantation is an effective cell therapy for type 1 diabetes (T1D) but its clinical application is limited due to shortage of donors. After a decade-long period of exploration of potential alternative cell sources, the field has only recently zeroed in on two of them as the most likely to replace islets. These are pluripotent stem cells (PSCs)(More)
The exocrine pancreas can give rise to endocrine insulin-producing cells upon ectopic expression of key transcription factors. However, the need for genetic manipulation remains a translational hurdle for diabetes therapy. Here we report the conversion of adult human nonendocrine pancreatic tissue into endocrine cell types by exposure to bone morphogenetic(More)
Alongside Pdx1 and Beta2/NeuroD, the transcription factor MafA has been shown to be instrumental in the maintenance of the beta cell phenotype. Indeed, a combination of MafA, Pdx1 and Ngn3 (an upstream regulator of Beta2/NeuroD) was recently reported to lead to the effective reprogramming of acinar cells into insulin-producing beta cells. These experiments(More)
Conventional culture vessels are not designed for physiological oxygen (O2) delivery. Both hyperoxia and hypoxia-commonly observed when culturing cells in regular plasticware-have been linked to reduced cellular function and death. Pancreatic islets, used for the clinical treatment of diabetes, are especially sensitive to sub- and supraphysiological O2(More)
Our knowledge of organ ontogeny is largely based on loss-of-function (knockout) or gain-of-function (transgenesis) approaches. However, developmental modulators such as proteins, mRNAs, microRNAs(miRNAs), small interfering RNAs, and other small molecules may complement the above DNA-modifying technologies in a much more direct way. Unfortunately, their use(More)
The emerge of personalized medicine demands high-quality human biospecimens with appropriate clinical annotation, especially in complex diseases such as cancer, neurodegenerative, cardiovascular, and metabolic alterations in which specimen heterogeneity and individual responses often complicate the development of precision therapeutic programs. In the(More)
Soluble endoglin (sENG) is increased in the amniotic fluid of women with preeclampsia and chorioamnionitis. Preterm infants born to women with these disorders have an increased risk of aberrant lung development. Whether this increased risk is secondary to elevated sENG levels is unclear. The objective of this study was to determine whether intrauterine(More)
Diabetes Research Institute, U. of Miami Miller School of Medicine, Miami, FL. Dept. of Surgery, U. of Miami Miller School of Medicine, Miami, FL. Dept. of Microbiology & Immunology, U. of Miami Miller School of Medicine, Miami, FL. Dept. of Biomedical Engineering, U. of Miami Miller School of Medicine, Miami, FL. Dept. of Medicine, U. of Miami Miller(More)
  • 1