Learn More
Considerable scientific and technological efforts have been devoted to develop neuroprostheses and hybrid bionic systems that link the human nervous system with electronic or robotic prostheses, with the main aim of restoring motor and sensory functions in disabled patients. A number of neuroprostheses use interfaces with peripheral nerves or muscles for(More)
This paper presents two robot devices for use in the rehabilitation of upper limb movements and reports the quantitative parameters obtained to characterize the rate of improvement, thus allowing a precise monitoring of patient's recovery. A one degree of freedom (DoF) wrist manipulator and a two-DoF elbow-shoulder manipulator were designed using an(More)
Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions. Despite the interruption of direct supraspinal pathways, the cortex regained the capacity to transform contextual(More)
BACKGROUND The humanoid robot WE4-RII was designed to express human emotions in order to improve human-robot interaction. We can read the emotions depicted in its gestures, yet might utilize different neural processes than those used for reading the emotions in human agents. METHODOLOGY Here, fMRI was used to assess how brain areas activated by the(More)
Significant strides have been recently made to develop highly sensorized cybernetic prostheses aimed at restoring sensorimotor limb functions to those who have lost them because of a traumatic event (amputation). In these cases, one of the main goals is to create a bidirectional link between the artificial devices (e.g., robotic hands, arms, or legs) and(More)
Epidural electrical stimulation (EES) of lumbosacral segments can restore a range of movements after spinal cord injury. However, the mechanisms and neural structures through which EES facilitates movement execution remain unclear. Here, we designed a computational model and performed in vivo experiments to investigate the type of fibers, neurons, and(More)
In this conceptual review, we highlight our strategy for, and progress in the development of corticospinal neuroprostheses for restoring locomotor functions and promoting neural repair after thoracic spinal cord injury in experimental animal models. We specifically focus on recent developments in recording and stimulating neural interfaces, decoding(More)
—An anthropomorphic underactuated prosthetic hand, endowed with position and force sensors and controlled by means of myoelectric commands, is used to perform experiments of hierarchical shared control. Three different hierarchical control strategies combined with a vibrotactile feedback system have been developed and tested by able-bodied subjects through(More)
BACKGROUND Motivation is an important factor in rehabilitation and frequently used as a determinant of rehabilitation outcome. Several factors can influence patient motivation and so improve exercise adherence. This paper presents the design of two robot devices for use in the rehabilitation of upper limb movements, that can motivate patients during the(More)
Several efforts have been carried out to enhance dexterous hand prosthesis control by impaired individuals. Choosing which voluntary signal to use for control purposes is a critical element to achieve this goal. This review presents and discusses the recent results achieved by using electromyographic signals, recorded either with surface (sEMG) or(More)