Silvana Marcussi

Learn More
The isolation and biochemical/enzymatic characterization of an L-amino acid oxidase, Balt-LAAO-I, from Bothrops alternatus snake venom, is described. Balt-LAAO-I is an acidic glycoprotein, pI approximately 5.37, homodimeric, Mr approximately 123,000, whose N-terminal sequence is ADVRNPLE EFRETDYEVL. It displays a high specificity toward hydrophobic and(More)
Tityus serrulatus is considered the most dangerous scorpion in South America and responsible for most of the fatal cases. This review will focus on Tityus serrulatus scorpion venom (Tsv), its long-chain Na(+)-channel toxins (NaTx), which include alpha- and beta-neurotoxins, short-chain K(+)-channel toxins (KTx), hyaluronidase, proteases and other peptides(More)
The venoms of Micrurus lemniscatus carvalhoi, Micrurus frontalis frontalis, Micrurus surinamensis surinamensis and Micrurus nigrocinctus nigrocinctus were assayed for biological activities. Although showing similar liposome disrupting and myotoxic activities, M. frontalis frontalis and M. nigrocinctus nigrocinctus displayed higher anticoagulant and(More)
A hemorrhagic metalloprotease, named BjussuMP-I, was isolated from Bothrops jararacussu snake venom by a combination of gel filtration on Sephacryl S-200 (0.01 M Tris-HCl, pH 7.6 buffer) and Phenyl Sepharose CL-4B chromatography (0.01 M Tris-HCl plus 4 M NaCl, pH 8.6 buffer, followed by a concentration gradient from 4 to 0 M NaCl at 25 degrees C in the same(More)
BjussuMP-II is an acidic low molecular weight metalloprotease (Mr approximately 24,000 and pI approximately 6.5), isolated from Bothrops jararacussu snake venom. The chromatographic profile in RP-HPLC and its N-terminal sequence confirmed its high purity level. Its complete cDNA was obtained by RT-PCR and the 615bp codified for a mature protein of 205 amino(More)
Envenomations due to snake bites are commonly treated by parenteral administration of horse or sheep-derived polyclonal antivenoms aimed at the neutralization of toxins. However, despite the widespread success of this therapy, it is still important to search for different venom inhibitors, either synthetic or natural, that could complement or substitute for(More)
We genetically modified Eclipta alba using Agrobacterium rhizogenes LBA 9402, with the aim of producing secondary metabolites with pharmacological properties against phospholipase A(2) and the myotoxic activities of snake venom. Extracts from in natura aerial parts and roots, both native and genetically modified (in vitro), were prepared and analysed by(More)
A protein, which neutralizes the enzymatic, toxic, and pharmacological activities of various basic and acidic phospholipases A(2) from the venoms of Bothrops moojeni, Bothrops pirajai, and Bothrops jararacussu, was isolated from B. moojeni snake plasma by affinity chromatography using immobilized myotoxins on Sepharose gel. Biochemical characterization of(More)
Bothropstoxin-II (Bthtx-II), an Asp-49 phospholipase A(2) (D-PLA(2)) isolated from Bothrops jararacussu snake venom is able to induce platelet aggregation in a concentration-dependent manner. This effect was not due to the release of ADP from platelets since the aggregation was not suppressed by ADP scavenger systems. PMSF and PPACK were unable to inhibit(More)
For more than half a century, cytotoxic agents have been investigated as a possible treatment for cancer. Research on animal venoms has revealed their high toxicity on tissues and cell cultures, both normal and tumoral. Snake venoms show the highest cytotoxic potential, since ophidian accidents cause a large amount of tissue damage, suggesting a promising(More)