Learn More
Somites are transient, mesodermally derived structures that give rise to a number of different cell types within the vertebrate embryo. To achieve this, somitic cells are partitioned into lineage-restricted domains, whose fates are determined by signals secreted from adjacent tissues. While the molecular nature of many of the inductive signals that trigger(More)
During development, Pax6 is expressed in a rostrolateral-high to caudomedial-low gradient in the majority of the cortical radial glial progenitors and endows them with neurogenic properties. Using a Cre/loxP-based approach, we studied the effect of conditional activation of two Pax6 isoforms, Pax6 and Pax6-5a, on the corticogenesis of transgenic mice. We(More)
Mutations in the human laminin alpha2 (LAMA2) gene result in the most common form of congenital muscular dystrophy (MDC1A). There are currently three models for the molecular basis of cellular pathology in MDC1A: (i) lack of LAMA2 leads to sarcolemmal weakness and failure, followed by cellular necrosis, as is the case in Duchenne muscular dystrophy (DMD);(More)
The skeletal muscle basement membrane fulfils several crucial functions during development and in the mature myotome and defects in its composition underlie certain forms of muscular dystrophy. A major component of this extracellular structure is the laminin polymer, which assembles into a resilient meshwork that protects the sarcolemma during contraction.(More)
Nkx2-5 is one of the master regulators of cardiac development, homeostasis and disease. This transcription factor has been previously associated with a suite of cardiac congenital malformations and impairment of electrical activity. When disease causative mutations in transcription factors are considered, NKX2-5 gene dysfunction is the most common(More)
BACKGROUND Over the last two decades, zebrafish have been established as a genetically versatile model system for investigating many different aspects of vertebrate developmental biology. With the credentials of zebrafish as a developmental model now well recognized, the emerging new opportunity is the wider application of zebrafish biology to aspects of(More)
Duchenne muscular dystrophy is caused by mutations in the dystrophin gene. As in humans, zebrafish dystrophin is initially expressed at the peripheral ends of the myofibres adjacent to the myotendinous junction and gradually shifts to non-junctional sites. Dystrophin-deficient zebrafish larvae are characterised by abundant necrotic fibres being replaced by(More)
Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical(More)
Duchenne muscular dystophy (DMD) is a severe muscle wasting disease caused by mutations in the dystrophin gene. By utilizing antisense oligonucleotides, splicing of the dystrophin transcript can be altered so that exons harbouring a mutation are excluded from the mature mRNA. Although this approach has been shown to be effective to restore partially(More)