Sigurdur S. Snorrason

Learn More
Recently, models of sympatric speciation have suggested that assortative mating can develop between sympatric morphs due to divergence in an ecologically important character. For example, in sympatric pairs of threespine stickleback (Gasterosteus aculeatus L.) size-assortative mating seems to be instrumental in reproductive isolation. Here, we examine(More)
Northern freshwater fish may be suitable for the genetic dissection of ecological traits because they invaded new habitats after the last ice age (∼10.000 years ago). Arctic charr (Salvelinus alpinus) colonizing streams and lakes in Iceland gave rise to multiple populations of small benthic morphotypes, often in sympatry with a pelagic morphotype. Earlier(More)
The evolutionary processes involved in population divergence and local adaptation are poorly understood. Theory predicts that divergence of adjacent populations is possible but depends on several factors including gene flow, divergent selection, population size and the number of genes involved in divergence and their distribution on the genome. We analyse(More)
Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial(More)
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charr Salvelinus alpinus populations in Iceland.  (More)
The developmental basis of craniofacial morphology hinges on interactions of numerous signalling systems. Extensive craniofacial variation in the polymorphic Arctic charr, a member of the salmonid family, from Lake Thingvallavatn (Iceland), offers opportunities to find and study such signalling pathways and their key regulators, thereby shedding light on(More)
  • 1