Learn More
Ciproxifan, i.e., cyclopropyl-(4-(3-1H-imidazol-4-yl)propyloxy) phenyl) ketone, belongs to a novel chemical series of histamine H3-receptor antagonists. In vitro, it behaved as a competitive antagonist at the H3 autoreceptor controlling [3H]histamine release from synaptosomes and displayed similar Ki values (0.5-1.9 nM) at the H3 receptor controlling the(More)
Species isoforms of histamine H2-, H3-, and H4-receptors differ in their pharmacological properties. The study aim was to dissect differences between the human H1R (hH1R) and guinea pig H1R (ghH1R). We coexpressed hH1R and gpH1R with regulators of G-protein signaling in Sf9 insect cells and analyzed the GTPase activity of Gq-proteins. Small H1R agonists(More)
A new class of histamine analogues characterized by a 3, 3-diphenylpropyl substituent at the 2-position of the imidazole nucleus has been prepared outgoing from 4,4-diphenylbutyronitrile (4b) via cyclization of the corresponding methyl imidate 5b with 2-oxo-4-phthalimido-1-butyl acetate or 2-oxo-1,4-butandiol in liquid ammonia, followed by standard(More)
New histamine derivatives characterized by a (substituted) aryl, heteroaryl, benzyl, or heteroarylmethyl substituent in the C2 position of the imidazole ring have been prepared from appropriate imidates or amidines, respectively, and 2-oxo-4-phthalimido-1-butyl acetate (1). The compounds were screened as potential H1 receptor agonists on the isolated guinea(More)
Bivalent histamine H(2) receptor (H(2)R) agonists were synthesized by connecting pharmacophoric 3-(2-amino-4-methylthiazol-5-yl)-, 3-(2-aminothiazol-5-yl)-, 3-(imidazol-4-yl)-, or 3-(1,2,4-triazol-5-yl)propylguanidine moieties by N(G)-acylation with alkanedioic acids of various chain lengths. The compounds were investigated for H(2)R agonism in GTPase and(More)
Significant progress in the development of potent and selective histamine H1-receptor agonists has been achieved since 1990. Optimisation of the class of 2-phenylhistamines has furnished 2-[3-(trifluoromethyl)phenyl]histamine and its Nalpha-methyl derivative. The discovery of histaprodifen (2-[2-(3,3-diphenylpropyl)-1H-imidazol-4-yl]ethanamine) and the(More)
We have shown previously that histaprodifen and its N α-substituted analogues methylhistaprodifen and dimethylhistaprodifen are highly potent H1-receptor agonists in vivo. The aim of the present study was to examine the influence of four newly synthesized histaprodifen analogues, 3-fluoro-methylhistaprodifen (1), N α-imidazolylethylhistaprodifen (2),(More)
FLT3 receptor tyrosine kinase is aberrantly active in many cases of acute myeloid leukemia (AML). Recently, bis(1H-indol-2-yl)methanones were found to inhibit FLT3 and PDGFR kinases. To optimize FLT3 activity and selectivity, 35 novel derivatives were synthesized and tested for inhibition of FLT3 and PDGFR autophosphorylation. The most potent FLT3(More)
Histamine H(3)-receptor antagonists of the proxifan series are described. The novel compounds possess a 4-(3-(phenoxy)propyl)-1H-imidazole structure and various functional groups, e.g., an oxime moiety, on the phenyl ring. Synthesis of the novel compounds and X-ray crystallography of one highly potent oxime derivative, named imoproxifan(More)