Learn More
The colorless, large sulfur bacteria are well known because of their intriguing appearance, size and abundance in sulfidic settings. Since their discovery in 1803 these bacteria have been classified according to their conspicuous morphology. However, in microbiology the use of morphological criteria alone to predict phylogenetic relatedness has frequently(More)
Benthic foraminifers inhabit a wide range of aquatic environments including open marine, brackish, and freshwater environments. Here we show that several different and diverse foraminiferal groups (miliolids, rotaliids, textulariids) and Gromia, another taxon also belonging to Rhizaria, accumulate and respire nitrates through denitrification. The widespread(More)
The intertidal communities on rocky shores are directly subjected to climatic changes in air and water temperatures and to derived effects of climate change, such as changes in freshwater run-off and ice dynamics. Global warming occurs at elevated rates in Greenland and results in changing species distributions with range expansions to the north and new(More)
The distribution of Thioploca populations was investigated in Danish fjords, brackish lakes and coastal waters. Thioploca was found in three geographically distinct populations, where biomasses reached 33.8+/-14.3 g wet weight m(-2) (mean+/-SD). Mats or lawns were not formed at the sediment surfaces and Thioploca biomasses peaked 4-7 cm into the sediment(More)
Among prokaryotes, the large vacuolated marine sulphur bacteria are unique in their ability to store, transport and metabolize significant quantities of sulphur, nitrogen, phosphorus and carbon compounds. In this study, unresolved questions of metabolism, storage management and behaviour were addressed in laboratory experiments with Thioploca species(More)
The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence(More)
A substantial nitrate pool is stored within living cells in various benthic marine environments. The fate of this bioavailable nitrogen differs according to the organisms managing the intracellular nitrate (ICN). While some light has been shed on the nitrate carried by diatoms and foraminiferans, no study has so far followed the nitrate kept by gromiids.(More)
  • 1