Learn More
OBJECTIVE Inflammation and fibrosis are essential promoters in the pathogenesis of diabetic nephropathy (DN) in type 2 diabetes. The present study examined the anti-inflammation and anti-fibrosis effect of Tangshen Formula (TSF), a traditional Chinese medicine, on DN. RESEARCH DESIGN AND METHODS Protective role of TSF in DN was examined in a rat model of(More)
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medical herbs have been used in China for a long time to treat different diseases. Based on traditional Chinese medicine (TCM) principle, Chaihuang-Yishen granule (CHYS) was developed and has been employed clinically to treat chronic kidney disease including diabetic nephropathy (DN). The present study was(More)
Quinoid dihydropteridine reductase (QDPR) is an enzyme involved in the metabolic pathway of tetrahydrobiopterin (BH4). BH4 is an essential cofactor of nitric oxide synthase (NOS) and can catalyze arginine to citrulline to release nitric oxide. Point mutations of QDPR have been found in the renal cortex of spontaneous Otsuka Long Evans Tokushima Fatty(More)
Tubular injury is closely correlated with the development of progressive diabetic nephropathy (DN), particularly in cases of type 2 diabetes. The apoptosis of tubular cells has been recognized as a major cause of tubular atrophy, followed by tubulointerstitial fibrosis. Electron transfer flavoprotein β (ETFβ) is known as an important electron acceptor in(More)
Two winter wheat cultivars (the functional stay-green CN12 and non-stay-green CN19) were used to investigate the effects of ear-shading on grain yield and to elucidate the differential mechanisms of different cultivars. The photosynthetic parameters, chlorophyll fluorescence, antioxidant enzyme activities, and chlorophyll contents were measured 0, 15 and 30(More)
Dihydropteridine reductase (QDPR) plays an important role in the recycling of BH4 and is closely related to oxidative stress. We have previously reported that the overexpression of QDPR in human kidney HEK293T cells significantly protected against oxidative stress, and these beneficial effects were abolished by A278C mutation. To evaluate the effect of(More)
  • 1