Siegfried Selberherr

Learn More
—SIMON is a single-electron tunnel device and circuit simulator that is based on a Monte Carlo method. It allows transient and stationary simulation of arbitrary circuits consisting of tunnel junctions, capacitors, and voltage sources of three kinds: constant, piecewise linearly time dependent, and voltage controlled. Cotunneling can be simulated either(More)
Discretization and iterative solution of the semiconductor equations in a three-dimensional rectangular region lead to very large sparse linear systems. Nevertheless, design engineers and scientists of device physics need reliable results in short time in order to draw the best advantage out of computer simulation when designing new technologies and(More)
—We present a monolithic low-power, low-noise analog front-end electroencephalogram acquisition system. It draws only 500 A from a standard 9-V battery, making it suitable for use in portable systems. Although fabricated in a standard CMOS technology, by using current feedback techniques it achieves a common mode rejection ratio of 100 dB while the total(More)
Electromigration failure is a major reliability concern for integrated circuits. The continuous shrinking of metal line dimensions together with the interconnect structure arranged in many levels of wiring with thousands of interlevel connections, such as vias, make the metallization structure more susceptible to failure. Mathematical modeling of(More)
—We evaluate optimization techniques to reduce the necessary user interaction for inverse modeling applications as they are used in the technology computer-aided design field. Four optimization strategies are compared. Two well-known global optimization methods, simulated annealing and genetic optimization, a local gradient-based optimization strategy, and(More)
With the modern transistor size shrinking below 45 nm the classical drift-diffusion model to describe transport in the conducting channel is loosing its validity. In short-channel devices carriers get accelerated by the driving field and do not thermalize before they reach the drain contact. Thus, the assumption underlying the classical transport model,(More)
a r t i c l e i n f o a b s t r a c t We present fast methods to describe the surface evolution of large three-dimensional structures. Based on the sparse field level set method and the hierarchical run-length encoding level set data structure optimal figures for the computation time and for the memory consumption are achieved. Furthermore, we introduce a(More)
The Wigner equation is a promising full quantum model for the simulation of nanodevices. It is also a challenging numerical problem. Two basic Monte Carlo approaches to this model exist exploiting, in the time-dependent case, the so-called particle aanity and, in the stationary case, integer particle signs. In this paper we extend the second approach for(More)