Sidy Ndao

Learn More
In the present work, the effects of surface chemistry and micro/nanostructuring on the Leidenfrost temperature are experimentally investigated. The functional surfaces were fabricated on a 304 stainless steel surface via femtosecond laser surface processing (FLSP). The droplet lifetime experimental method was employed to determine the Leidenfrost(More)
The authors present highly selective emitters based on two-dimensional tantalum (Ta) photonic crystals, fabricated on 2 in. polycrystalline Ta substrates, for high-temperature applications, e.g., thermophotovoltaic energy conversion. In this study, a fabrication route facilitating large-area photonic crystal fabrication with high fabrication uniformity and(More)
The design and simulation of a wide angle, spectrally selective absorber/emitter metallic photonic crystal (MPhC) is presented. By using dielectric filled cavities, the angular, spectrally selective absorption/emission of the MPhC is dramatically enhanced over an air filled design by minimizing diffraction losses. Theoretical analysis is performed and(More)
After decades of intense studies focused on cryogenic and room temperature nanophotonics, scientific interest is also growing in high-temperature nanophotonics aimed at solid-state energy conversion. These latest extensive research efforts are spurred by a renewed interest in high temperature thermal-to-electrical energy conversion schemes including(More)
Keywords: Pool boiling Critical heat flux Femtosecond laser surface processing Heat transfer coefficients Metallic enhanced heat transfer surfaces a b s t r a c t In this paper, we present an experimental investigation of pool boiling heat transfer on multiscale (micro/ nano) functionalized metallic surfaces. Heat transfer enhancement in metallic surfaces(More)
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract: To bridge the gap between theoretically predicted and experimentally demonstrated efficiencies of solar thermophotovoltaics (STPVs), we consider the impact of spectral non-idealities on the efficiency and the optimal design of(More)
We review recent advances in the fundamental understanding and technological applications of radiative processes for energy harvesting, conversion, efficiency, and sustainability. State-of-the-art and remaining challenges are discussed, together with the latest developments outlined in the papers comprising this focus issue. The topics range from the(More)
We report the design, optimization, and experimental results of large area commercial silicon solar cell based thermophotovoltaic (TPV) energy conversion systems. Using global non-linear optimization tools, we demonstrate theoretically a maximum radiative heat-to-electricity efficiency of 6.4% and a corresponding output electrical power density of 0.39 W cm(More)
In this paper, an experimental investigation of the effects of droplet diameters on the Leidenfrost temperature and its shifts has been carried out. Tests were conducted on a 304 stainless steel polished surface and a stainless steel surface which was processed by a femtosecond laser to form Above Surface Growth (ASG) nano/microstructures. To determine the(More)
Femtosecond Laser Surface Processing (FLSP) is a powerful technique for the fabrication of self-organized multiscale surface structures on metals that are critical for advanced control over energy transfer at a liquid/solid interface in applications such as electrolysis. The efficiency of the hydrogen evolution reaction on stainless steel 316 electrodes in(More)