Learn More
We have developed a procedure to isolate, from skeletal muscle, enriched terminal cisternae of sarcoplasmic reticulum (SR), which retain morphologically intact junctional "feet" structures similar to those observed in situ. The fraction is largely devoid of transverse tubule, plasma membrane, mitochondria, triads (transverse tubules junctionally associated(More)
Isolated skeletal muscle ryanodine receptors (RyRs) complexed with the modulatory ligands, calmodulin (CaM) or 12-kDa FK506-binding protein (FKBP12), have been characterized by electron cryomicroscopy and three-dimensional reconstruction. RyRs are composed of 4 large subunits (molecular mass 565 kDa) that assemble to form a 4-fold symmetric complex that,(More)
FK506 binding proteins 12 and 12.6 (FKBP12 and FKBP12.6) are intracellular receptors for the immunosuppressant drug FK506 (ref. 1). The skeletal muscle ryanodine receptor (RyR1) is isolated as a hetero-oligomer with FKBP12 (ref. 2), whereas the cardiac ryanodine receptor (RyR2) more selectively associates with FKBP12.6 (refs 3, 4, 5). FKBP12 modulates Ca2+(More)
Excitation-contraction (E-C) coupling is thought to involve close interactions between the calcium release channel (ryanodine receptor; RyR) of the sarcoplasmic reticulum (SR) and the dihydropyridine receptor (DHPR) alpha 1 subunit in the T-tubule membrane. Triadin, a 95-kD protein isolated from heavy SR, binds both the RyR and DHPR and may thus participate(More)
The ryanodine receptor/calcium release channel (CRC) of rabbit skeletal muscle terminal cisternae (TC) of sarcoplasmic reticulum (SR) has been found to be tightly associated with FK-506 binding protein (FKBP-12), the cytosolic receptor (immunophilin) for the immunosuppressant drug FK-506 (Jayaraman, T., Brillantes, A. M., Timerman, A. P., Fleischer, S.,(More)
FKBP-12 (FKBP), the soluble receptor for the immunosuppresant drug FK-506, is tightly bound to the calcium release channel (CRC)/ryanodine receptor (RyR) of skeletal muscle terminal cisternae (TC) of sarcoplasmic reticulum with a stoichiometry of 4 mol of FKBP per tetrameric RyR complex. FKBP displays cis/trans-peptidyl-prolyl isomerase (PPIase) activity(More)
The calcium release channel (CRC) from skeletal muscle is an unusually large tetrameric ion channel of the sarcoplasmic reticulum, and it is a major component of the triad junction, the site of excitation contraction coupling. The three-dimensional architecture of the CRC was determined from a random conical tilt series of images extracted from electron(More)
The calcium channel responsible for the release of Ca2+ from the sarcoplasmic reticulum of skeletal muscle during excitation-contraction coupling has recently been identified and purified. The isolated calcium channel has been identified morphologically with the 'foot' structures which are associated with the junctional face membrane of the terminal(More)
This study examined the localization and functional expression of ryanodine receptors (RyR) within the cochlea using a combination of reverse transcription-polymerase chain reaction, immunolabeling techniques, and confocal Ca2+ imaging. All three RyR isoform mRNA transcripts were detected in the adult rat cochlea. Immunoperoxidase and immunofluorescence(More)
The IP3 receptor of aortic smooth muscle, purified to near homogeneity, was incorporated into vesicle derived planar bilayers. The receptor forms channels which are gated by Ins(1,4,5)P3 (0.5 microM) and are permeable to Ca2+ (Ca2+ greater than K+ much greater than Cl-). Channel activation is specific for Ins(1,4,5)P3. Essentially no activation of channel(More)