Learn More
Diclofenac (DCLF) is a nonsteroidal anti-inflammatory drug that is widely used for the treatment of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, and acute muscle pain conditions. Toxic doses of DCLF can cause nephrotoxicity in humans and experimental animals. However, whether this DCLF-induced nephrotoxicity involves apoptotic cell death in(More)
Hepatotoxic doses of acetaminophen cause early impairment of Ca2+ homeostasis in the liver. This in vivo study considers the nucleus as a possible site of lethal Ca2+ action by evaluating whether acetaminophen raises Ca2+ in this compartment, whether DNA becomes altered, and whether DNA changes occur early enough during injury to contribute causally to(More)
Hepatotoxic alkylation of mouse liver cells by acetaminophen is characterized by an early loss of ion regulation, accumulation of Ca2+ in the nucleus, and fragmentation of DNA in vitro and in vivo. Acetaminophen-induced DNA cleavage is accompanied by the formation of a "ladder" of DNA fragments characteristic of Ca(2+)-mediated endonuclease activation.(More)
Free radicals and oxidative stress play a crucial role in the pathophysiology of a broad spectrum of cardiovascular diseases including congestive heart failure, valvular heart disease, cardiomyopathy, hypertrophy, atherosclerosis and ischemic heart disease. We have demonstrated that IH636 grape seed proanthocyanidin extract (GSPE) provides superior(More)
Acetaminophen (AAP), the analgesic hepatotoxicant, is a powerful inducer of oxidative stress, DNA fragmentation, and apoptosis. The anti-apoptotic oncogene bcl-XL, and the pro-apoptotic oncogene p53 are two key regulators of cell cycle progression and/or apoptosis subsequent to DNA damage in vitro and in vivo. This study investigated the effect of AAP on(More)
1. The comparative protective abilities of zinc L-methionine, zinc DL-methionine, zinc sulfate, zinc gluconate, L-methionine, DL-methionine, and vitamin E succinate (VES) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced lipid peroxidation, DNA fragmentation, and glutathione depletion in the hepatic and brain tissues, and production of reactive oxygen(More)
Free radicals have been implicated in over a hundred disease conditions in humans, including arthritis, hemorrhagic shock, atherosclerosis, advancing age, ischemia and reperfusion injury of many organs, Alzheimer and Parkinson's disease, gastrointestinal dysfunctions, tumor promotion and carcinogenesis, and AIDS. Antioxidants are potent scavengers of free(More)
Ca2+ accumulates in the nucleus and DNA undergoes enzymatic cleavage into internucleosome-length fragments before acetaminophen and dimethylnitrosamine produce hepatic necrosis in vivo and toxic cell death in vitro. However, Ca(2+)-endonuclease fragmentation of DNA is characteristic of apoptosis, a type of cell death considered biochemically and(More)
Hepatocellular necrosis occurs under a wide range of pathological conditions. In most cases, toxic cell death takes place over a finite span of time, delayed from the point of initial injury and accompanied by homeostatic counterresponses that are varied and complex. The present strategies for discovering critical steps in cell death recognize that (1)(More)
Several hepatotoxic agents damage Ca++ regulation and produce toxic cell death in a manner consistent with a cause-and-effect relationship; however, vital targets of Ca++ remain unidentified. Recent results show that DNA may be the chief Ca++ target during apoptosis, a form of cell death considered distinct from toxic cell death or necrosis. The present(More)