Learn More
We design arbitrarily high-order accurate entropy stable schemes for systems of conservation laws. The schemes, termed TeCNO schemes, are based on two main ingredients: (i) high-order accurate entropy conservative fluxes and (ii) suitable numerical diffusion operators involving ENO reconstructed cell-interface values of scaled entropy variables. Numerical(More)
We present a streamline diffusion shock capturing spacetime discontinuous Galerkin (DG) method to approximate nonlinear systems of conservation laws in several space dimensions. The degrees of freedom are in terms of the entropy variables and the numerical flux functions are the entropy stable finite volume fluxes. We show entropy stability of the(More)
We consider a scalar conservation law with a discontinuous flux function. The fluxes are non-convex, have multiple points of extrema and can have arbitrary intersections. We propose an entropy formulation based on interface connections and associated jump conditions at the interface. We show that the entropy solutions with respect to each choice of(More)
The Multi-Level Monte Carlo finite volumes (MLMC-FVM) algorithm was shown to be a robust and fast solver for uncertainty quan-tification in the solutions of multi-dimensional systems of stochastic conservation laws. A novel load balancing procedure is used to ensure scal-ability of the MLMC algorithm on massively parallel hardware. We describe this(More)
We consider constraint preserving multidimensional evolution equations. A prototypical example is provided by the magnetic induction equation of plasma physics. The constraint of interest is the divergence of the magnetic field. We design finite volume schemes which approximate these equations in a stable manner and preserve a discrete version of the(More)
Solutions of initial-boundary value problems for systems of conservation laws depend on the underlying viscous mechanism, namely different viscosity operators lead to different limit solutions. Standard numerical schemes for approximating conservation laws do not take into account this fact and converge to solutions that are not necessarily physically(More)
Morphogen gradients guide the patterning of tissues and organs during the development of multicellular organisms. In many cases, morphogen signaling is also required for tissue growth. The consequences of this interplay between growth and patterning are not well understood. In the Drosophila wing imaginal disc, the morphogen Dpp guides patterning and is(More)