Siddhartha Chib

Learn More
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in(More)
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in(More)
This paper is concerned with finite mixture models in which the populations from one observation to the next are selected according to an unobserved Markov process. A new, full Bayesian approach based on the method of Gibbs sampling is developed. Calculations are simplified by data augmentation, achieved by introducing a population index variable into the(More)
This paper is concerned with the Bayesian estimation and comparison of flexible, high dimensional multivariate time series models with time varying correlations. The model proposed and considered here combines features of the classical factor model with that of the heavy tailed univariate stochastic volatility model. A unified analysis of the model, and its(More)
We consider the Bayes estimation of the Tobit censored regression model with normally distributed errors. A simple condition for the existence of posterior moments is provided. Suitable versions of Monte Carlo procedures based on symmetric multivariate-t distributions, and Laplacian approximations in a certain parametrization, are developed and illustrated.(More)
We present a method for comparing semiparametric Bayesian models, constructed under the Dirichlet process mixture (DPM) framework, with alternative semiparameteric or parameteric Bayesian models. A distinctive feature of the method is that it can be applied to semiparametric models containing covariates and hierarchical prior structures, and is apparently(More)