Siaka Yamoussa Coulibaly

Learn More
Despite the well-documented immune suppression associated with human helminth infections, studies characterizing the immune response at the single-cell level are scanty. We used multiparameter flow cytometry to characterize the type of effector (Th1, Th2, and Th17) and regulatory (natural T regulatory cells [nTregs] and adaptive Treg cells [aTreg/type 1(More)
BACKGROUND Mansonella perstans infection is common in areas of Africa where Wuchereria bancrofti, a causative agent of lymphatic filariasis, is endemic. M. perstans is refractory to standard antifilarial therapies. The recent discovery of bacterial endosymbionts (e.g., wolbachia) in most filarial species, including M. perstans, provides new therapeutic(More)
The effect of filarial infections on malaria-specific immune responses was investigated in Malian villages coendemic for filariasis (Fil) and malaria. Cytokines were measured from plasma and Ag-stimulated whole blood from individuals with Wuchereria bancrofti and/or Mansonella perstans infections (Fil(+); n = 19) and those without evidence of filarial(More)
The mechanisms underlying the modulation of both the malaria-specific immune response and the course of clinical malaria in the context of concomitant helminth infection are poorly understood. We used multiparameter flow cytometry to characterize the quality and the magnitude of malaria-specific T cell responses in filaria-infected and -uninfected(More)
BACKGROUND Wuchereria bancrofti (Wb) and Mansonella perstans (Mp) are blood-borne filarial parasites that are endemic in many countries of Africa, including Mali. The geographic distribution of Wb and Mp overlaps considerably with that of malaria, and coinfection is common. Although chronic filarial infection has been shown to alter immune responses to(More)
BACKGROUND Annual mass treatment with albendazole and ivermectin is the mainstay of current strategies to interrupt transmission of Wuchereria bancrofti in Africa. More-effective microfilarial suppression could potentially reduce the time necessary to interrupt transmission, easing the economic burden of mass treatment programs in countries with limited(More)
APC dysfunction has been postulated to mediate some of the parasite-specific T cell unresponsiveness seen in patent filarial infection. We have shown that live microfilariae of Brugia malayi induce caspase-dependent apoptosis in human monocyte-derived dendritic cells (DCs) in vitro. This study addresses whether apoptosis observed in vitro extends to patent(More)
Wuchereria bancrofti prevalence and transmission were assessed in six endemic villages in Sikasso, Mali prior to and yearly during mass drug administration (MDA) with albendazole and ivermectin from 2002 to 2007. Microfilaremia was determined by calibrated thick smear of night blood in adult volunteers and circulating filarial antigen was measured using(More)