Shyamal Patel

Learn More
This paper presents the results of a pilot study to assess the feasibility of using accelerometer data to estimate the severity of symptoms and motor complications in patients with Parkinson's disease. A support vector machine (SVM) classifier was implemented to estimate the severity of tremor, bradykinesia and dyskinesia from accelerometer data features.(More)
The aim of this review paper is to summarize recent developments in the field of wearable sensors and systems that are relevant to the field of rehabilitation. The growing body of work focused on the application of wearable technology to monitor older adults and subjects with chronic conditions in the home and community settings justifies the emphasis of(More)
This paper describes <i>Mercury</i>, a wearable, wireless sensor platform for motion analysis of patients being treated for neuromotor disorders, such as Parkinson's Disease, epilepsy, and stroke. In contrast to previous systems intended for short-term use in a laboratory, Mercury is designed to support long-term, longitudinal data collection on patients in(More)
This letter introduces MercuryLive, a platform to enable home monitoring of patients with Parkinson's disease (PD) using wearable sensors. MercuryLive contains three tiers: a resource-aware data collection engine that relies upon wearable sensors, web services for live streaming and storage of sensor data, and a web-based graphical user interface client(More)
This paper is focused on the analysis of data obtained from wearable sensors in patients with Parkinson's Disease. We implemented Support Vector Machines (SVM's) to predict clinical scores of the severity of Parkinsonian symptoms and motor complications. We determined the optimal window length to extract features from the sensor data. Furthermore, we(More)
We present work to develop a wireless wearable sensor system for monitoring patients with Parkinson's disease (PD) in their homes. For monitoring outside the laboratory, a wearable system must not only record data, but also efficiently process data on-board. This manuscript details the analysis of data collected using tethered wearable sensors. Optimal(More)
This paper presents a novel, smart and portable active knee rehabilitation orthotic device (AKROD) designed to train stroke patients to correct knee hyperextension during stance and stiff-legged gait (defined as reduced knee flexion during swing). The knee brace provides variable damping controlled in ways that foster motor recovery in stroke patients. A(More)
Objective long-term health monitoring can improve the clinical management of several medical conditions ranging from cardiopulmonary diseases to motor disorders. In this paper, we present our work toward the development of a home-monitoring system. The system is currently used to monitor patients with Parkinson's disease who experience severe motor(More)
The objective of this study was the development of a remote monitoring system to monitor and detect simple motor seizures. Using accelerometer-based kinematic sensors, data were gathered from subjects undergoing medication titration at the Beth Israel Deaconess Medical Center. Over the course of the study, subjects repeatedly performed a predefined set of(More)
In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin(More)