Learn More
Shigella spp. are among the enteric pathogens with the highest attributable incidence of moderate-to-severe diarrhea in children under 5 years of age living in endemic areas. There are no vaccines available to prevent this disease. In this work, we investigated a new Shigella vaccine concept consisting of nonliving, self-adjuvanted, Lactococcus lactis(More)
The Shigella flexneri Type III secretion system (T3SS) senses contact with human intestinal cells and injects effector proteins that promote pathogen entry as the first step in causing life threatening bacillary dysentery (shigellosis). The Shigella Type III secretion apparatus (T3SA) consists of an anchoring basal body, an exposed needle, and a temporally(More)
Bacterium-like particles (BLPs), derived from Lactococcus lactis, offer a self-adjuvanting delivery vehicle for subunit protein vaccines. Proteins can be specifically loaded onto the BLPs via a peptidoglycan anchoring (PA) domain. In this study, the tip proteins IpaD, SipD, and LcrV belonging to type III secretion systems of Shigella flexneri, Salmonella(More)
Shigellosis is an important diarrheal disease, especially among children in the developing world. About 90 million infections with Shigella spp are estimated to appear each year. We previously demonstrated that the type III secretion apparatus (T3SA) proteins IpaB and IpaD are protective antigens when administered intranasally using the mouse lethal(More)
Shigella spp. are food- and waterborne pathogens that cause severe diarrheal and dysenteric disease associated with high morbidity and mortality. Individuals most often affected are children under 5 years of age in the developing world. The existence of multiple Shigella serotypes and the heterogenic distribution of pathogenic strains, as well as emerging(More)
Diarrhea caused by Shigella, Salmonella, and Yersinia is an important public health problem, but development of safe and effective vaccines against such diseases is challenging. A new antigen delivery platform called bacterium-like particles (BLPs) was explored as a means for delivering protective antigens from the type III secretion systems (T3SS) of these(More)
Shigella spp. are causative agents of bacillary dysentery, a human illness with high global morbidity levels, particularly among elderly and infant populations. Shigella infects via the fecal-oral route, and its virulence is dependent upon a type III secretion system (T3SS). Two components of the exposed needle tip complex of the Shigella T3SS, invasion(More)
Shigella spp. are food- and water-borne pathogens that cause shigellosis, a severe diarrheal and dysenteric disease that is associated with a high morbidity and mortality in resource-poor countries. No licensed vaccine is available to prevent shigellosis. We have recently demonstrated that Shigella invasion plasmid antigens (Ipas), IpaB and IpaD, which are(More)
Shigellosis is an important disease in the developing world, where about 90 million people become infected with Shigella spp. each year. We previously demonstrated that the type three secretion apparatus (T3SA) proteins IpaB and IpaD are protective antigens in the mouse lethal pulmonary model. In order to simplify vaccine formulation and process(More)
Shigella spp. are the causative agent of shigellosis, the second leading cause of diarrhea in children of ages 2-5. Despite many years of research, a protective vaccine has been elusive. We recently demonstrated that invasion plasmid antigens B and D (IpaB and IpaD) provide protection against S. flexneri and S. sonnei. These proteins, however, have very(More)