Shuxun Chen

Learn More
Engineering induced cell fusion is becoming a promising tool in novel therapeutic studies for treating various diseases. The majority of current in vitro cell fusion methods are based on random cell pairing with loose contact, which also needs large amounts of cells. In this paper, we present a robotically controlled laser-induced cell fusion approach based(More)
Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus, tumor-initiating(More)
This paper presents a robot-assisted methodology that integrates optical tweezer and microfluidic chip technologies to realize automatic cell sorting from small sample population. The microfluidic chip used for cell sorter is designed and fabricated, and the flow environment within the microfluidic channel is investigated with simulation. Two image(More)
This paper presents the design and fabrication of a magnetic microrobot transcporter with porous spherical structure produced by 3D laser lithography. The microrobots are coated with nickel (Ni) and titanium (Ti) for magnetic actuation and biocompatibility, respectively. A series of characterization experiments is conducted to show that Ni coating enables(More)
As rapid development of precision medicine, in vivo manipulation of micro/nano-scaled particles have attracted increasing attention in recent years. To accommodate complex in-vivo environment, robot-aided automated manipulation technology is highly demanded in trapping and controlling micro/nano-particles stably and effectively. This paper presents an(More)
Cell transfection is a technique wherein foreign genetic molecules are delivered into cells. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great value. Herein, we developed an automated micropipette-based quantitative microinjection technology that can deliver precise(More)
Few of the current injection technologies can be applied to those human cells whose diameters are ranged about 10-25 (im only. This paper reports our most recent effort in developing a robot-aided microinjection system to solve the challenging problem of automated injection on human cells. A unique microfluidic cell holding chip is designed and fabricated(More)
A design synthesis technique based on sensitivity for Micro-Electro-Mechanical Systems (MEMS) proposed. This new technique can be called Sensitivity-Based Direct Solution Algorithm (DSA) of design synthesis for MEMS with expected performance. Design synthesis with expected performance is regarded as a reverse problem of MEMS analysis. Behavior equation(More)