Learn More
The increasing pervasiveness of location-acquisition technologies has enabled collection of huge amount of trajectories for almost any kind of moving objects. Discovering useful patterns from their movement behaviours can convey valuable knowledge to a variety of critical applications. In this light, we propose a novel concept, called gathering, which is a(More)
The advances in location positioning and wireless communication technologies have led to a myriad of spatial trajectories representing the mobility of a variety of moving objects. While processing trajectory data with the focus of spatio-temporal features has been widely studied in the last decade, recent proliferation in location-based web applications(More)
Trajectory sharing and searching have received significant attentions in recent years. In this paper, we propose and investigate a novel problem called User Oriented Trajectory Search (UOTS) for trip recommendation. In contrast to conventional trajectory search by locations (spatial domain only), we consider both spatial and textual domains in the new UOTS(More)
The increasing pervasiveness of location-acquisition technologies has enabled collection of huge amount of trajectories for almost any kind of moving objects. Discovering useful patterns from their movement behaviors can convey valuable knowledge to a variety of critical applications. In this light, we propose a novel concept, called gathering, which is a(More)
With the increasing availability of moving-object tracking data, trajectory search and matching is increasingly important. We propose and investigate a novel problem called personalized trajectory matching (PTM). In contrast to conventional trajectory similarity search by spatial distance only, PTM takes into account the significance of each sample point in(More)
We propose and investigate a novel query, the Collective Travel Planning (CTP) query, that finds the lowest-cost route connecting multiple query sources and a destination via at most k meeting points. This type of query is useful in organizing large events, and it can bring significant benefits to society and the environment: it can help optimize the(More)
Long-term location tracking, where trajectory compression is commonly used, has gained high interest for many applications in transport, ecology, and wearable computing. However, state-of-the-art compression methods involve high space-time complexity or achieve unsatisfactory compression rate, leading to rapid exhaustion of memory, computation, storage and(More)
State-of-the-art trajectory compression methods usually involve high space-time complexity or yield unsatisfactory compression rates, leading to rapid exhaustion of memory, computation, storage, and energy resources. Their ability is commonly limited when operating in a resource-constrained environment especially when the data volume (even when compressed)(More)
Different uses of a road network call for the consideration of different travel costs: in route planning, travel time and distance are typically considered, and green house gas (GHG) emissions are increasingly being considered. Further, travel costs such as travel time and GHG emissions are time-dependent and uncertain. To support such uses, we propose(More)
Conventional top-k spatial keyword queries require users to explicitly specify their preferences between spatial proximity and keyword relevance. In this work we investigate how to eliminate this requirement by enhancing the conventional queries with interaction, resulting in Interactive Top-k Spatial Keyword (ITkSK) query. Having confirmed the feasibility(More)