• Citations Per Year
Learn More
In the present work, the excited-state double proton transfer (ESDPT) in 2-aminopyridine (2AP)/acid systems has been reconsidered using the combined experimental and theoretical methods. The steady-state absorption and fluorescence spectra of 2AP in different acids, such as formic acid, acetic acid, propionic acid, etc. have been measured. We demonstrated(More)
This protocol is intended to provide chemists and physicists with a tool for predicting the charge carrier mobilities of π-stacked systems such as organic semiconductors and the DNA double helix. An experimentally determined crystal structure is required as a starting point. The simulation involves the following operations: (i) searching the crystal(More)
Attaching electron-withdrawing substituent to organic conjugated molecules is considered as an effective method to produce n-type and ambipolar transport materials. In this work, we use density functional theory calculations to investigate the electron and hole transport properties of pentacene (PENT) derivatives after substituent and simulate the angular(More)
Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP(More)
Based on first-principles calculations, the relationship between molecular packing and charge-transport parameters has been investigated and analysed in detail. It is found that the crystal packing forces in the flexible organic molecule 4-(1,2,2-triphenylvinyl)-aniline salicylaldehyde hydrazone (A) can apparently overcome the dynamic intramolecular(More)
The excited state hydrogen bonding dynamics and corresponding photophysical processes of fast violet B (FVB) in hydrogen-donating methanol (MeOH) solution are investigated by using time-dependent density functional theory (TDDFT) method. In the FVB molecule, there are -C=O, -N-H groups which could act as hydrogen acceptor and donor. It is demonstrated that(More)
  • 1