Shunya Hozumi

Learn More
The internal organs of animals often have left-right asymmetry. Although the formation of the anterior-posterior and dorsal-ventral axes in Drosophila is well understood, left-right asymmetry has not been extensively studied. Here we find that the handedness of the embryonic gut and the adult gut and testes is reversed (not randomized) in viable and fertile(More)
Some organs in animals display left-right (LR) asymmetry. To better understand LR asymmetric morphogenesis in Drosophila, we studied LR directional rotation of the hindgut epithelial tube. Hindgut epithelial cells adopt a LR asymmetric (chiral) cell shape within their plane, and we refer to this cell behavior as planar cell-shape chirality (PCC). Drosophila(More)
The class I myosin genes are conserved in diverse organisms, and their gene products are involved in actin dynamics, endocytosis, and signal transduction. Drosophila melanogaster has three class I myosin genes, Myosin 31DF (Myo31DF), Myosin 61F (Myo61F), and Myosin 95E (Myo95E). Myo31DF, Myo61F, and Myo95E belong to the Myosin ID, Myosin IC, and Myosin IB(More)
In Drosophila, Myosin31DF (Myo31DF), encoding a Myosin ID protein, has crucial roles in left-right (LR) asymmetric development. Loss of Myo31DF function leads to laterality inversion for many organs, including the embryonic gut. Here, we found that Myo31DF was required before LR asymmetric morphogenesis in the hindgut, suggesting it functions in LR(More)
Epigenetic modifications such as DNA methylation and chromatin modifications are critical for regulation of spatiotemporal gene expression during development. In mammals, the de novo-type DNA methyltransferases (Dnmts), Dnmt3a and Dnmt3b, are responsible for the creation of DNA methylation patterns during development. In addition to developmental processes,(More)
The mechanistic target of rapamycin complex1 (mTORC1) signaling pathway has been implicated in functions of multicellular processes, including cell growth and metabolism. Although recent reports showed that many signaling pathways, including Activin, Bmp, Fgf, sonic hedgehog, Insulin-like growth factor (IGF), Notch, retinoic acid, and Wnt, are implicated in(More)
Many animals have genetically determined left-right (LR) asymmetry of their internal organs. The midline structure of vertebrate embryos has important roles in LR asymmetric development both as the signaling center for LR asymmetry and as a barrier to inappropriate LR signaling across the midline. However, in invertebrates, the functions of the midline in(More)
Although bilateral animals appear to have left-right (LR) symmetry from the outside, their internal organs often show directional and stereotypical LR asymmetry. The mechanisms by which the LR axis is established in vertebrates have been extensively studied. However, how each organ develops its LR asymmetric morphology with respect to the LR axis is still(More)
Although bilateral animals, including Drosophila, appear to have left-right (LR) symmetry from the outside, their internal organs often show directional and stereotypical LR asymmetry. The mechanisms by which the LR axis is established in Drosophila have not been studied well. We showed that two type I Myosin proteins play crucial roles in the manifestation(More)
Spatially and temporally controlled gene expression, including transcription, several mRNA processing steps, and the export of mature mRNA to the cytoplasm, is essential for developmental processes. It is well known that RNA helicases of the DExD/H-box protein family are involved in these gene expression processes, including transcription, pre-mRNA(More)