Learn More
The purpose of this study was to examine the effects of applied mechanical index, incident angle, attenuation and thrombus age on the ability of 2-D vs. 3-D diagnostic ultrasound and microbubbles to dissolve thrombi. A total of 180 occlusive porcine arterial thrombi of varying age (3 or 6 h) were examined in a flow system. A tissue-mimicking phantom of(More)
Tumor angiogenesis is of vital importance to the growth and metastasis of solid tumors. The angiogenesis is featured with a defective, leaky and fragile vascular construction. Microbubble enhanced ultrasound (MEUS) cavitation is capable of mechanical disruption of small blood vessels depending on effective acoustic pressure amplitude. We hypothesized that(More)
The purpose of this study was to investigate the vascular effects of microbubble-enhanced pulsed high-pressure ultrasound on liver blood perfusion. In the presence of circulating lipid-shell microbubbles, a focused ultrasound transducer was used to transcutaneously treat eight livers of healthy rabbits for perfusion analysis and to treat three livers with(More)
OBJECTIVES Intravenous microbubbles (MBs) and transcutaneous ultrasound have been used to recanalize intra-arterial thrombi without the use of tissue plasminogen activator. In the setting of acute ischemic stroke, it was our objective to determine whether skull attenuation would limit the ability of ultrasound alone to induce the type and level of(More)
Ultrasound induced cavitation has been explored as a method of dissolving intravascular and microvascular thrombi in acute myocardial infarction. The purpose of this study was to determine the type of cavitation required for success, and whether longer pulse duration therapeutic impulses (sustaining the duration of cavitation) could restore both(More)
BACKGROUND During a microbubble infusion, guided high-mechanical index impulses from a diagnostic two-dimensional transducer improve microvascular recanalization in acute ST-segment elevation myocardial infarction. The purpose of this study was to further elucidate the mechanism of improved microvascular flow in normal and hyperlipidemic atherosclerotic(More)
Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around(More)
BACKGROUND Central venous and arterial catheters are a major source of thromboembolic disease in children. The investigators hypothesized that guided high-mechanical index (MI) impulses from diagnostic three-dimensional (3D) ultrasound during an intravenous microbubble infusion could dissolve these thrombi. METHODS An in vitro system simulating(More)
BACKGROUND Central venous catheter (CVC) thrombi result in significant morbidity in children, and currently available treatments are associated with significant risk. We sought to investigate the therapeutic efficacy of microbubble (MB) enhanced sonothrombolysis for aged CVC associated thrombi in vivo. METHODS AND RESULTS A model of chronic indwelling CVC(More)
The admittance and Wei's equation is a new technique for ventricular volumetry to determine pressure-volume relations that addresses traditional conductance-related issues of parallel conductance and field correction factor. These issues with conductance have prevented researchers from obtaining real-time absolute ventricular volumes. Moreover, the(More)