Shun-Peng Zhu

Learn More
Damage evolution during low cycle fatigue, creep, and their interaction behavior is actually a ductility exhaustion process in response to cyclic and static creep. In this article, a novel viscosity-based model for low cycle fatigue creep life prediction is presented in an attempt to condition viscosity-based approaches for general use in isothermal and(More)
The inverse Gaussian process is recently introduced as an attractive and flexible stochastic process for degradation modeling. This process has been demonstrated as a valuable complement for models that are developed on the basis of the Wiener and gamma processes. We investigate the optimal design of the degradation tests on the basis of the inverse(More)
Low cycle fatigue–creep is the main reason for the failures of many engineering components under high temperature and cyclic loading. Based on the exhaustion of the static toughness and dissipation of the plastic strain energy during fatigue failure, a new low cycle fatigue–creep life prediction model that is consistent with the fatigue–creep damage(More)
As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types,(More)
Based on the derivation and calculation of the Corten–Dolan exponent d , a practical method of determining its value is proposed. This exponent depends not only upon the materials, but also upon the load spectrums. Therefore its value is obtained by a function which decreases with increasing stress amplitude. This exponent was investigated through analysis(More)
Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical(More)
Probabilistic life prediction of aircraft turbine disks requires the modeling of multiple complex random phenomena. Through combining test data with technological knowledge available from theoretical analyses and/or previous experimental data, the Bayesian approach gives a more complete estimate and provides a formal updating approach that leads to better(More)
Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters(More)