Learn More
Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were(More)
Identification of biomaterials that support appropriate cellular attachment, proliferation and gene expression patterns is critical for tissue engineering and cell therapy. Here we describe an approach for rapid, nanoliter-scale synthesis of biomaterials and characterization of their interactions with cells. We simultaneously characterize over 1,700 human(More)
Transplantation of a tissue-engineered heart muscle represents a novel experimental therapeutic paradigm for myocardial diseases. However, this strategy has been hampered by the lack of sources for human cardiomyocytes and by the scarce vasculature in the ischemic area limiting the engraftment and survival of the transplanted muscle. Beyond the necessity of(More)
Myocardial regeneration strategies have been hampered by the lack of sources for human cardiomyocytes (CMs) and by the significant donor cell loss following transplantation. We assessed the ability of a three-dimensional tissue-engineered human vascularized cardiac muscle to engraft in the in vivo rat heart and to promote functional vascularization. Human(More)
Growing interest in using endothelial cells for therapeutic purposes has led to exploring human embryonic stem cells as a potential source for endothelial progenitor cells. Embryonic stem cells are advantageous when compared with other endothelial cell origins, due to their high proliferation capability, pluripotency, and low immunogenity. However, there(More)
One of the major obstacles in engineering thick, complex tissues such as muscle is the need to vascularize the tissue in vitro. Vascularization in vitro could maintain cell viability during tissue growth, induce structural organization and promote vascularization upon implantation. Here we describe the induction of endothelial vessel networks in engineered(More)
Human embryonic stem (hES) cells hold promise as an unlimited source of cells for transplantation therapies. However, control of their proliferation and differentiation into complex, viable 3D tissues is challenging. Here we examine the use of biodegradable polymer scaffolds for promoting hES cell growth and differentiation and formation of 3D structures.(More)
Human embryonic stem (hES) cells have the potential to form various cell types, including neural cells for the treatment of diseases such as Parkinson's, spinal cord injury, and glaucoma. Here, we have investigated the neuronal differentiation of hES cells on three-dimensional scaffolds fabricated from degradable poly(alpha-hydroxy esters) including(More)
Long-term viability of thick three-dimensional engineered tissue constructs is a major challenge. Addressing it requires development of vessel-like network that will allow the survival of the construct in vitro and its integration in vivo owing to improved vascularization after implantation. Resulting from work of various research groups, several approaches(More)