Shuko Suzuki

Learn More
While fibroin isolated from the cocoons of domesticated silkworm Bombyx mori supports growth of human corneal limbal epithelial (HLE) cells, the mechanism of cell attachment remains unclear. In the present study we sought to enhance the attachment of HLE cells to membranes of Bombyx mori silk fibroin (BMSF) through surface functionalization with an(More)
A silk protein, fibroin, was isolated from the cocoons of the domesticated silkworm (Bombyx mori) and cast into membranes to serve as freestanding templates for tissue-engineered corneal cell constructs to be used in ocular surface reconstruction. In this study, we sought to enhance the attachment and proliferation of corneal epithelial cells by increasing(More)
OBJECTIVES Watertight dural closure is imperative after neurosurgical procedures because inadequately treated leakage of cerebrospinal fluid (CSF) can have serious consequences. In this study, the authors test the use of a new gelatin glue as a dural sealant in in vitro and in vivo canine models of transdural CSF leakage. METHODS The in vitro model was(More)
There is significant research dedicated to fibroin and sericin, the two major proteinaceous components of the silk threads produced by the domesticated silkworm, Bombyx mori. While fibroin is accepted as an established biomaterial, sericin (BMSS) has been largely neglected in this respect on the account of a hypothetical allergenic activity. Research over(More)
Scaffolds prepared from silk fibroin derived from cocoons of the domesticated silkworm moth Bombyx mori have demonstrated potential to support the attachment and growth of human limbal epithelial (HLE) cells in vitro. In this study, we attempted to further optimize protocols to promote the expansion of HLE cells on B. mori silk fibroin- (BMSF-) based(More)
Bombyx mori silk fibroin membranes provide a potential delivery vehicle for both cells and extracellular matrix (ECM) components into diseased or injured tissues. We have previously demonstrated the feasibility of growing retinal pigment epithelial cells (RPE) on fibroin membranes with the view to repairing the retina of patients afflicted with age-related(More)
Watertight dural closure is imperative after neurosurgical procedures, because inadequately treated leakage of cerebrospinal fluid (CSF) can have serious consequences. We used a rat durotomy model to test the usefulness of a new gelatin glue as a dural sealant in a rat model of transdural CSF leakage. All rats were randomly divided into one of the following(More)
  • 1