Shuju Feng

Learn More
We examined the hypothesis that filamin A binding to the cytoplasmic tail of platelet glycoprotein Ibalpha (GpIbalpha) is regulated by pathologic shear stress and modulates von Willebrand factor (VWF)-induced platelet activation. To begin, we examined filamin binding to GpIbalpha in Chinese hamster ovary cells coexpressing mutant human GpIb-IX and wild-type(More)
Integrin mechanotransduction is a ubiquitous biological process. Mechanical forces are transduced transmembranously by an integrin's ligand-bound extracellular domain through its beta-subunit's cytoplasmic domain connected to the cytoskeleton. This often culminates in the activation of tyrosine kinases directing cell responses. The delicate balance between(More)
Pathologically elevated shear stress triggers aspirin-insensitive platelet thrombosis. Signaling mechanisms involved in shear-induced platelet thrombosis are not well understood. To investigate these, we examined the hypothesis that functionally important platelet phosphatidylinositol 3-kinase (PI3-K) activity is stimulated by an in vitro shear stress of(More)
The glycoprotein (Gp) Ib-IX-V complex is essential for platelet-mediated hemostasis and thrombosis. The cytoplasmic domain of its largest polypeptide subunit GpIbalpha possesses a binding region for filamin A, which links GpIb-IX-V to the platelet cytoskeleton. There is evidence that filamin A binding to GpIbalpha directs the surface expression of GpIb-IX.(More)
Shear stress causes the platelet glycoprotein (Gp) Ib/IX/V to bind to von Willebrand factor, resulting in platelet adhesion. GpIb/IX/V also functions to stimulate transmembranous signaling, leading to platelet activation and the expression of a ligand-receptive GpIIb-IIIa complex. The highly conserved cytoplasmic domain of GpIbalpha binds directly to a(More)
Complement dysregulation leads to atypical hemolytic uremic syndrome (aHUS), while ADAMTS13 deficiency causes thrombotic thrombocytopenic purpura. We investigated whether genetic variations in the ADAMTS13 gene partially explain the reduced activity known to occur in some patients with aHUS. We measured complement activity and ADAMTS13 function, and(More)
The extracellular domain of glycoprotein (Gp) Ibalpha serves as the von Willebrand factor (vWf) receptor that triggers shear stress-dependent platelet aggregation. Its intracellular domain associates with actin-binding protein-280 (filamin 1a) that binds directly to filamentous actin, thereby linking the membrane skeleton to GpIbalpha. We examined the(More)
Mechanisms of shear-induced platelet aggregation are not established. Data that ristocetin-induced von Willebrand factor (VWF) binding to glycoprotein (Gp) Ibalpha activates proline-rich tyrosine kinase 2 (Pyk2) and extracellular-regulated kinase (ERK) has led to speculation that these events are coupled and that a MAP kinase may activate cytosolic(More)
The glycoprotein (Gp) Ib/IX complex contains three transmembranous leucine-rich repeat polypeptides (GpIbalpha, GpIbbeta, and GpIX) that form the platelet von Willebrand factor (vWF) receptor. GpIb/IX functions to effect platelet adhesion, activation, and aggregation under conditions of high shear stress. GpIb/IX is expressed late in the ontogeny of(More)
Several complement proteins interact with hemostatic factors. We discovered that von Willebrand factor (VWF) acts as a cofactor for factor I-mediated cleavage of complement C3b, thereby shutting down complement activation. The complement regulatory function of VWF multimers depends on their size. Smaller VWF multimers enhance cleavage of C3b but large and(More)