Shuji Hibiya

Learn More
Patients with inflammatory bowel disease (IBD) have an increased risk of developing colitis-associated colorectal cancer (CAC). CAC cells often develop chemoresistance, resulting in a poorer prognosis than that of sporadic colorectal cancer (CRC). The mechanism by which CAC enhances malignant potential remains unknown. We have previously reported that the(More)
Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3(More)
BACKGROUND AND AIM Ulcerative colitis (UC) is a chronic inflammatory disease of the colon with an intractable, recurrent course. Although the goal of UC therapy has recently been to target mucosal healing, the molecular mechanism of mucosal healing remains unknown. In this study, we aimed to elucidate the molecular dynamics related to the proliferation and(More)
The transcription factor Atonal homolog 1 (Atoh1) plays crucial roles in the differentiation of intestinal epithelium cells. Although we have reported that the Atoh1 protein was degraded in colon cancer by aberrant Wnt signaling, a recent study has indicated that the Atoh1 protein is expressed in mucinous colon cancer (MC) and signet ring cell carcinoma(More)
BACKGROUND AND AIMS The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour. METHODS Intestinal organoids(More)
Background and Aims Patients with ulcerative colitis [UC] are at an increased risk of developing colitis-associated cancer [CAC], suggesting that continuous inflammation in the colon promotes the transformation of colonic epithelial cells. However, the mechanisms underlying cell transformation in UC remain unknown. We therefore aimed to investigate the(More)
BACKGROUND Mucosal barrier dysfunction is considered a critical component of Crohn's disease (CD) pathogenesis after the identification of susceptibility genes. However, the precise mechanism underlying mucosal barrier dysfunction has not yet been elucidated. We therefore aimed to elucidate the molecular mechanism underlying the expression of human(More)
  • 1