Learn More
Visual spatial resolution is limited by factors ranging from optics to neuronal filters in the visual cortex, but it is not known to what extent it is also limited by the resolving power of attention. To investigate this, we studied adaptation to lines of specific orientation, a process that occurs in primary visual cortex. When a single grating is(More)
Disrupted-in-Schizophrenia-1 (DISC1), identified by positional cloning of a balanced translocation (1;11) with the breakpoint in intron 8 of a large Scottish pedigree, is associated with a range of neuropsychiatric disorders including schizophrenia. To model this mutation in mice, we have generated Disc1(tr) transgenic mice expressing 2 copies of truncated(More)
Exposure to visual patterns of high contrast (for example, gratings formed by alternating white and black bars) creates after-effects in perception. We become temporarily insensitive to faint test patterns that resemble the pre-exposed pattern (such as gratings of the same orientation), and we require more contrast to detect them. Moreover, if the test(More)
Contrast sensitivity for orientation discrimination is limited to spatial frequencies below 50-60 cycles per degree by neural spatial integration, and we find that contrast sensitivity, measured using an orientation-discrimination criterion, declines sharply with increasing spatial frequencies in that range. Yet interference fringe patterns pulsed at(More)
Using a laser interferometer we can create grating patterns of high optical contrast (interference fringes) directly on the retina. With coarse fringe patterns, the alternating light and dark bars of the pattern can be seen, but the bars of the finest fringes are not subjectively resolved. We report here that when we rapidly modulate the contrast of a fine(More)
Attention can enhance selectively the visual information processing of particular locations or objects. Recent studies have shown that this enhancement has limited spatial resolution, the smallest regions that can be isolated by attention are much coarser than the smallest details that can be resolved by vision. Multiple similar objects spaced more finely(More)
It is widely held that in human spatial vision the visual scene is initially processed through visual filters, each of which is responsive to narrow ranges of image spatial frequencies. The physiological basis of these filters are thought to be cortical neurons with receptive fields of different sizes. The grain of the neural representation of spatial(More)
This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical(More)
The paper presents a numerical investigation of pulsatile blood flow in arterial vasculatures of a mouse retina using a Womersley model incorporating an appropriate outlet boundary impedance at the end of the terminal vessels of the arterial tree (pre-capillary arterioles). The mouse retinal flatmount was prepared for confocal microscopy and the(More)
  • 1