Learn More
As a direct extension of previous mode-I work on the adhesion of composite joints, this paper uses a cohesive-zone approach to model the mixed-mode fracture of adhesive joints made from a polymer-matrix composite. Mode-II cohesive-zone parameters were obtained using sandwich end-notch flexure specimens. These parameters were used directly with the(More)
Adhesive Particle Flow: A Discrete-Element Approach offers a comprehensive treatment of adhesive particle flows at the particle level. This book adopts a particle-level approach oriented toward directly simulating the various fluid, electric field, collision, and adhesion forces and torques acting on the particles, within the framework of a discrete-element(More)
The interactions between nanoparticles in high-temperature vapor-synthesis environments have important implications on their self-assembly into specific structures. We apply classical molecular dynamics (MD) simulations, with the Matsui-Akaogi interatomic potential, to study the interaction forces and the resulting dynamics between pairs of cooriented and(More)
The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease(More)
In this paper, the use of cohesive-zone models to analyze crack-path selection in adhesive joints made from a polymer-matrix composite is demonstrated. Cohesive-zone parameters for the adhesive and composite obtained in previous work were used without any modifications to make the predictions presented in this study. The results of numerical simulations of(More)
The absorption-ablation-excitation mechanism in laser-cluster interactions is investigated by measuring Rayleigh scattering of aerosol clusters along with atomic emission from phase-selective laser-induced breakdown spectroscopy. For 532 nm excitation, as the laser intensity increases beyond 0.16  GW/cm^{2}, the scattering cross section of TiO_{2} clusters(More)
Two-dimensional spouted bed, capable to provide both dilute granular gas and dense granular solid flow patterns in one system, was selected as a prototypical system for studying granular materials. Effects of liquid cohesion on such kind of complex granular patterns were studied using particle image velocimetry. It is seen that the addition of liquid oils(More)
We explore adhesive loose packings of dry small spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics. A dimensionless adhesion parameter (Ad) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for Ad > 1. The(More)
We systematically generate a large set of random micro-particle packings over a wide range of adhesion and friction by means of adhesive contact dynamics simulation. The ensemble of generated packings covers a range of volume fractions ϕ from 0.135 ± 0.007 to 0.639 ± 0.004, and of coordination numbers Z from 2.11 ± 0.03 to 6.40 ± 0.06. We determine ϕ and Z(More)
Light-emitting diode (LED) efficiency has attracted considerable interest because of the extended use of solid-state lighting. Owing to lack of direct measurement, identification of the reasons for efficiency droop has been restricted. A direct measurement technique is developed in this work for characterization of biaxial stress in GaN-based blue LEDs(More)