Learn More
To date, few studies have focused on reducing the toxic by-product acetate during 1,3-propanediol production by Klebsiella pneumoniae. In this study, the effects of deleting the poxB, pta, and ackA genes, which are involved in the two main acetate synthesis pathways, on cell growth and 1,3-propanediol production were investigated. Although acetate synthesis(More)
To improve 1,3-propanediol production in Klebsiella pneumoniae, the effects of puuC expression in lactate- and lactate/2,3-butanediol-deficient strains were assessed. Overexpression of puuC (encoding an aldehyde dehydrogenase) inhibited 1,3-propanediol production and increased 3-hydroxypropionic acid formation in both lactate- and(More)
AIMS To investigate the role of phosphoenolpyruvate (PEP) carboxylation in cell metabolism in Klebsiella pneumoniae. METHODS AND RESULTS The effects of deleting pck, which encodes PEP carboxykinase (PCK), and/or ppc, which encodes PEP carboxylase (PPC), on growth, enzyme activity, and metabolite formation of K. pneumoniae were investigated. A(More)
Through studying the process of glycerol fermentation to 1, 3-propanediol(1, 3-PD) by Klebsiella pneumoniae, it was found that the cell growth and product (or by-product) production were under salt stress. Cell growth and product formation kept high rate at low salt concentration. High salt concentration led to low growth of cells, final concentration of 1,(More)
Growth of Escherichia coli BL21 in a glycerol minimal medium was accelerated following supplementation with trace amounts of amino acid (0.35 mM). Of 12 amino acids tested, Arg and Ser gave the highest response, increasing cell growth by 63 and 53 %, respectively, compared to control cells. The ability of amino acids to accelerate cell growth was(More)
Much effort has been devoted to the metabolic engineering of Klebsiella pneumoniae; however, our knowledge of the actual expression level of promoters used in K. pneumoniae is limited. In this study, the expression levels of three promoters were compared systematically by using the lacZ reporter gene with different carbon sources in K. pneumoniae. The(More)
  • 1