Shuichao Lin

Learn More
Metal nanoclusters whose surface ligands are removable while keeping their metal framework structures intact are an ideal system for investigating the influence of surface ligands on catalysis of metal nanoparticles. We report in this work an intermetallic nanocluster containing 62 metal atoms, Au34Ag28(PhC≡C)34, and its use as a model catalyst to explore(More)
Point-of-care testing (POCT) with the advantages of speed, simplicity, portability, and low cost is critical for the measurement of analytes in a variety of environments where access to laboratory infrastructure is lacking. While qualitative POCTs are widely available, quantitative POCTs present significant challenges. Here we describe a novel method that(More)
Herein, we demonstrate that a very familiar, yet underutilized, physical parameter—gas pressure—can serve as signal readout for highly sensitive bioanalysis. Integration of a catalyzed gas-generation reaction with a molecular recognition component leads to significant pressure changes, which can be measured with high sensitivity using a low-cost and(More)
Poly(methyl methacrylate) (PMMA) is gaining in popularity in microfluidic devices because of its low cost, excellent optical transparency, attractive mechanical/chemical properties, and simple fabrication procedures. It has been used to fabricate micromixers, PCR reactors, CE and many other microdevices. Here we present the design, fabrication,(More)
An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the(More)
CO confinement strategy for ultrathin Rh nanosheets: CO is introduced as a confining agent to regulate the anisotropic growth of unique 2D structure. The single-crystalline Rh nanosheets have a thickness of three to five atomic layers and tunable edge length ranging from 500 to 1300 nm. By understanding the formation mechanism, surface-clean Rh nanosheets(More)
With the incorporation of Pd or Pt atoms, thiolated Ag-rich 25-metal-atom nanoclusters were successfully prepared and structurally characterized for the first time. With a composition of [PdAg24(SR)18](2-) or [PtAg24(SR)18](2-), the obtained 25-metal-atom nanoclusters have a metal framework structure similar to that of widely investigated Au25(SR)18. In(More)
Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst.(More)
In this work, a facile ion-pairing strategy for asymmetric synthesis of optically active negatively charged chiral metal nanoparticles using chiral ammonium cations is demonstrated. A new thiolated chiral three-concentric-shell cluster, [Ag28Cu12(SR)24](4-), was first synthesized as a racemic mixture and characterized by single-crystal X-ray structure(More)
The synthesis, structure, substitution chemistry, and optical properties of the gold-centered cubic monocationic cluster [Au@Ag8 @Au6 (C≡C(t) Bu)12 ](+) are reported. The metal framework of this cluster can be described as a fragment of a body-centered cubic (bcc) lattice with the silver and gold atoms occupying the vertices and the body center of the cube,(More)