Learn More
A miniature robotic device that can fold-up on the spot, accomplish tasks, and disappear by degradation into the environment promises a range of medical applications but has so far been a challenge in engineering. This work presents a sheet that can self-fold into a functional 3D robot, actuate immediately for untethered walking and swimming, and(More)
Genetic bottlenecks facilitate the fixation and extinction of variants in populations, and viral populations are no exception to this theory. To examine the existence of genetic bottlenecks in cell-to-cell movement of plant RNA viruses, we prepared constructs for Soil-borne wheat mosaic virus RNA2 vectors carrying two different fluorescent proteins, yellow(More)
Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it(More)
Developing miniature robots that can carry out versatile clinical procedures inside the body under the remote instructions of medical professionals has been a long time challenge. In this paper, we present origami-based robots that can be ingested into the stomach, locomote to a desired location, patch a wound, remove a foreign body, deliver drugs, and(More)
The tobamovirus genome is a 5'-m(7)G-capped RNA that carries a tRNA-like structure at its 3'-terminus. The genomic RNA serves as the template for both translation and negative-strand RNA synthesis. The 5'- and 3'-untranslated regions (UTRs) of the genomic RNA contain elements that enhance translation, and the 3'-UTR also contains the elements necessary for(More)
Representation and manipulation of multiple target locations would be important aspects of spatial working memory [Tanaka 2002a, b]. It is, however, unknown how such processes are performed in the prefrontal cortical, corticocortical, and cortico-subcortical circuits. We here propose a model of the prefrontal cortical and cortico-thalamocortical circuits(More)
We have developed a modified yeast two-hybrid system using the GAL4 transcription activator by integrating a BD:bait gene (GAL4 binding domain:bait gene) into the host chromosome. Locus-specific integration by homologous recombination and use of a strong transcription promoter enabled uniform expression of the integrated BD:bait gene in all host cells.(More)
Self-folding is an approach used frequently in nature for the efficient fabrication of structures, but is seldom used in engineered systems. Here, self-folding origami are presented, which consist of shape memory composites that are activated with uniform heating in an oven. These composites are rapidly fabricated using inexpensive materials and tools. The(More)
Remotely and selectively turning on and off the magnetization of many micro-scale magnetic actuators could be a great enabling feature in fields such as microrobotics and microfluidics. We present an array of addressable 800 6 800 6 75 mm 3 micropumps made from a composite material whose net magnetic moment can be selectively turned on or off by application(More)
Self-assembly is a process through which an organized structure can spontaneously form from simple parts. Taking inspiration from biological examples of self-assembly, we designed and built a water-based modular robotic system consisting of autonomous plastic tiles capable of aggregation on the surface of water. In this paper, we investigate the effect of(More)