Learn More
Significant advances in fragment-based electronic structure methods have created a real alternative to force-field and density functional techniques in condensed-phase problems such as molecular crystals. This perspective article highlights some of the important challenges in modeling molecular crystals and discusses techniques for addressing them. First,(More)
Accurately modeling molecular crystal polymorphism requires careful treatment of diverse intra- and intermolecular interactions which can be difficult to achieve without the use of high-level ab initio electronic structure techniques. Fragment-based methods like the hybrid many-body interaction QM/MM technique enable the application of accurate electronic(More)
Crystalline oxalyl dihydrazide has five experimentally known polymorphs whose energetics are governed by subtle balances between intra- and intermolecular interactions, providing a severe challenge for theoretical crystal structure modeling. Previous work has shown that many common density functional methods that neglect van der Waals dispersion cannot(More)
To avoid repeated, computationally expensive QM solute calculations while sampling MM solvent in QM/MM simulations, a new approach for constructing an implicit solvent model by coarse-graining the solvent properties over many explicit solvent configurations is proposed. The solvent is modeled using a polarizable force field that is parameterized in terms of(More)
We combine quantum and classical mechanics in a fragment-based many-body interaction model to predict organic molecular crystal lattice energies. Individual molecules in the central unit cell and their short-range pairwise interactions are modeled quantum mechanically, while long-range pairwise and many-body interactions are approximated classically. The(More)
  • 1