Learn More
Stress perception and signal transduction leading to tolerance involve a complex interplay of different gene products. We describe here the isolation and characterization of an intronless gene (OSISAP1) from rice encoding a zinc-finger protein that is induced after different types of stresses, namely cold, desiccation, salt, submergence, and heavy metals as(More)
Proteins with the A20/AN1 zinc-finger domain are present in all eukaryotes and are well characterized in animals, but little is known about their function in plants. Earlier, we have identified an A20/AN1 zinc-finger containing stress associated protein 1 gene (SAP1) in rice and validated its function in abiotic stress tolerance. In this study, genome-wide(More)
• The inbuilt mechanisms of plant survival have been exploited for improving tolerance to abiotic stresses. Stress-associated proteins (SAPs), containing A20/AN1 zinc-finger domains, confer abiotic stress tolerance in different plants, however, their interacting partners and downstream targets remain to be identified. • In this study, we have investigated(More)
Plants are exposed to different abiotic stresses, such as water deficit, high temperature, salinity, cold, heavy metals and mechanical wounding, under field conditions. It is estimated that such stress conditions can potentially reduce the yield of crop plants by more than 50%. Investigations of the physiological, biochemical and molecular aspects of stress(More)
A20/AN1 zinc-finger domain-containing proteins are well characterized in animals, and their role in regulating the immune response is established. Recently, such A20/AN1 zinc-finger proteins have been reported from plants. These plant proteins are involved in stress response, but their exact molecular mechanism of action is yet to be deciphered. Sequence(More)
Stress associated proteins (SAPs), novel A20/AN1 zinc-finger domain-containing proteins, are fast emerging as potential candidates for biotechnological approaches in order to improve abiotic stress tolerance in plants - the ultimate aim of which is crop-yield protection. Until relatively recently, such proteins had only been identified in humans, where they(More)
Receptor-like cytoplasmic kinases (RLCKs) in plants belong to the super family of receptor-like kinases (RLKs). These proteins show homology to RLKs in kinase domain but lack the transmembrane domain. Some of the functionally characterized RLCKs from plants have been shown to play roles in development and stress responses. Previously, 149 and 187 RLCK(More)
OsiSAP1, an A20/AN1 zinc-finger protein, confers water-deficit stress tolerance at different stages of growth by affecting expression of several endogenous genes in transgenic rice. Transgenic lines have been generated from rice constitutively expressing OsiSAP1, an A20/AN1 zinc-finger containing stress-associated protein gene from rice, driven by maize(More)
Rice cultivation is one of the most important agricultural activities on earth, with nearly 90% of it being produced in Asia. It belongs to the family of crops that includes wheat, maize and barley, and it supplies more than 50% of calories consumed by the world population. Its immense economic value and a relatively small genome size makes it a focal point(More)
The DNA sequence of 106 BAC/PAC clones in the minimum tiling path (MTP) of the long arm of rice chromosome 11, between map positions 57.3 and 116.2 cM, has been assembled to phase 2 or PLN level. This region has been sequenced to 10× redundancy by the Indian Initiative for Rice Genome Sequencing (IIRGS) and is now publicly available in GenBank. The region,(More)