Learn More
Reverse genetic approaches to understanding gene function would be greatly facilitated by increasing the efficiency of methods for isolating mutants without the reliance on a predicted phenotype. Established PCR-based methods of isolating deletion mutants are widely used for this purpose in Caenorhabditis elegans. However, these methods are inefficient at(More)
Many bacteriophage and prophage genomes encode an HNH endonuclease (HNHE) next to their cohesive end site and terminase genes. The HNH catalytic domain contains the conserved catalytic residues His-Asn-His and a zinc-binding site [CxxC](2). An additional zinc ribbon (ZR) domain with one to two zinc-binding sites ([CxxxxC], [CxxxxH], [CxxxC], [HxxxH], [CxxC](More)
BssHII restriction endonuclease cleaves 5'-GCGCGC-3' on double-stranded DNA between the first and second bases to generate a four base 5'overhang. BssHII restriction endonuclease was purified from the native Bacillus stearothermophilus H3 cells and its N-terminal amino acid sequence was determined. Degenerate PCR primers were used to amplify the first 20(More)
Type III R-M enzymes were identified >40 years ago and yet there is no structural information on these multisubunit enzymes. Here we report the structure of a Type III R-M system, consisting of the entire EcoP15I complex (Mod2Res1) bound to DNA. The structure suggests how ATP hydrolysis is coupled to long-range diffusion of a helicase on DNA, and how a(More)
A nomenclature is described for restriction endonucleases, DNA methyltransferases, homing endonucleases and related genes and gene products. It provides explicit categories for the many different Type II enzymes now identified and provides a system for naming the putative genes found by sequence analysis of microbial genomes.
A gene encoding a putative DNA helicase from Staphylococcus aureus USA300 was cloned and expressed in Escherichia coli. The protein was purified to over 90% purity by chromatography. The purified enzyme, SauUSI, predominantly cleaves modified DNA containing 5mC and 5-hydroxymethylcytosine. Cleavage of 5mC-modified plasmids indicated that the sites S5mCNGS(More)
Restriction endonucleases (REases) are highly specific DNA scissors that have facilitated the development of modern molecular biology. Intensive studies of double strand (ds) cleavage activity of Type IIP REases, which recognize 4-8 bp palindromic sequences, have revealed a variety of mechanisms of molecular recognition and catalysis. Less well-studied are(More)
Introduction Prior to the ''genomic era,'' when the acquisition of DNA sequence involved significant labor and expense, the sequenc-ing of genes was strongly linked to the experimental characterization of their products. Sequencing at that time directly resulted from the need to understand an The Community Page is a forum for organizations and societies to(More)
An extremely thermostable restriction endonuclease, PspGI, was purified from Pyrococcus sp. strain GI-H. PspGI is an isoschizomer of EcoRII and cleaves DNA before the first C in the sequence 5' CCWGG 3' (W is A or T). PspGI digestion can be carried out at 65 to 85 degrees C. To express PspGI at high levels, the PspGI restriction-modification genes (pspGIR(More)
BsrDI and BtsI restriction endonucleases recognize and cleave double-strand DNA at the sequences GCAATG (2/0) and GCAGTG (2/0), respectively. We have purified and partially characterized these two enzymes, and analyzed the genes that encode them. BsrDI and BtsI are unusual in two respects: each cleaves DNA as a heterodimer of one large subunit (B subunit)(More)