Shuang-yin Wang

Learn More
During early embryonic development, one of the two X chromosomes in mammalian female cells is inactivated to compensate for a potential imbalance in transcript levels with male cells, which contain a single X chromosome. Here, we use mouse female embryonic stem cells (ESCs) with non-random X chromosome inactivation (XCI) and polymorphic X chromosomes to(More)
Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as lipopolysaccharide (LPS). We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time-dependent manner.(More)
The impact of signal-dependent transcription factors, such as glucocorticoid receptor and nuclear factor kappa-b, on the three-dimensional organization of chromatin remains a topic of discussion. The possible scenarios range from remodeling of higher order chromatin architecture by activated transcription factors to recruitment of activated transcription(More)
Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197(More)
Serum-to-2i interconversion of mouse embryonic stem cells (mESCs) is a valuable in vitro model for early embryonic development. To assess whether 3D chromatin organization changes during this transition, we established Capture Hi-C with target-sequence enrichment of DNase I hypersensitive sites. We detected extremely long-range intra- and inter-chromosomal(More)
Temperature-responsive phase separation of poly(N-(2-ethoxyethyl)acrylamide) (PEoEA, phase transition temperature, T(p) = 38 degrees C) and poly(N-(2-ethoxyethyl)methacrylamide) (PEoEMA, T(p) = 50 degrees C) in aqueous solutions has been investigated by infrared spectroscopy. They had a wide transition temperature region ( approximately 25 degrees C), and(More)
Explaining why type I collagens are preferentially preserved in the geological time scale remains a challenge. Several pieces of evidence indicate that its rich content in the bone and its unique, stable structure played key roles in its preservation. By considering the distinct thermal stability of amino acids, we reveal that the elevated abundance of(More)
RNA modifications are integral to the regulation of RNA metabolism. One abundant mRNA modification is N6-methyladenosine (m6A), which affects various aspects of RNA metabolism, including splicing, translation and degradation. Current knowledge about the proteins recruited to m6A to carry out these molecular processes is still limited. Here we describe(More)