Learn More
Spinal cord injury is a devastating condition, with much of the clinical disability resulting from disruption of white matter tracts. Recent reports suggest a component of glutamate excitotoxicity in spinal cord injury. In this study, the role of glutamate and mechanism of release of this excitotoxin were investigated in rat dorsal column slices subjected(More)
Spinal cord injury involves a component of glutamate-mediated white matter damage, but the cellular targets, receptors, and ions involved are poorly understood. Mechanisms of excitotoxicity were examined in an in vitro model of isolated spinal dorsal columns. Compound action potentials (CAPs) were irreversibly reduced to 43% of control after 3 hr of 1 mM(More)
Excitotoxic mechanisms involving alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA)/kainate receptors play an important role in mediating cellular damage in spinal cord injury. However, the precise cellular mechanisms of glutamate release from non-synaptic white matter are not well understood. We examined how the collapse of transmembrane Na(+)(More)
Sound duration is important for distinguishing auditory object. Previous studies on the neural representation of duration have usually lacked psychophysical data obtained from the same species; hence, the correspondence between neural and behavioral discrimination of duration remains obscure. We addressed this issue in cats by using the signal detection(More)
Spinal cord injury is a devastating condition in which most of the clinical disability results from dysfunction of white matter tracts. Excessive cellular Ca(2+) accumulation is a common phenomenon after anoxia/ischemia or mechanical trauma to white matter, leading to irreversible injury because of overactivation of multiple Ca(2+)-dependent biochemical(More)
  • 1