Learn More
Voltage-gated calcium channel (Ca(v))2.2 (N-type calcium channels) are key components in nociceptive transmission pathways. Ziconotide, a state-independent peptide inhibitor of Ca(v)2.2 channels, is efficacious in treating refractory pain but exhibits a narrow therapeutic window and must be administered intrathecally. We have discovered an N-triazole(More)
Structurally modified 3-(N-benzylamino)propylphosphonic acid S1P receptor agonists that maintain affinity for S1P1, and have decreased affinity for S1P3 are efficacious, but exhibit decreased acute cardiovascular toxicity in rodents than do nonselective agonists.
It has been shown that peripheral chemoreceptor sensitivity is enhanced in both clinical and experimental heart failure (HF) and that impairment of nitric oxide (NO) production contributes to this enhancement. In order to understand the cellular mechanisms associated with the alterations of chemoreceptor function and the actions of NO in the carotid body(More)
The voltage-gated calcium channel Ca(v)2.2 (N-type calcium channel) is a critical regulator of synaptic transmission and has emerged as an attractive target for the treatment of chronic pain. We report here the discovery of sulfonamide-derived, state-dependent inhibitors of Ca(v)2.2. In particular, 19 is an inhibitor of Ca(v)2.2 that is selective over(More)
We report the investigation of sulfonamide-derived Cav2.2 inhibitors to address drug-metabolism liabilities with this lead class of analgesics. Modification of the benzamide substituent provided improvements in both potency and selectivity. However, we discovered that formation of the persistent 3-(trifluoromethyl)benzenesulfonamide metabolite was an(More)
  • 1