Shu-Wei Huang

Learn More
High-quality frequency references are the cornerstones in position, navigation and timing applications of both scientific and commercial domains. Optomechanical oscillators, with direct coupling to continuous-wave light and non-material-limited f × Q product, are long regarded as a potential platform for frequency reference in radio-frequency-photonic(More)
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We experimentally and numerically study the atomic response and pulse(More)
Optical frequency combs-coherent light sources that connect optical frequencies with microwave oscillations-have become the enabling tool for precision spectroscopy, optical clockwork, and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but Kerr nonlinear dynamics in high-Q solid-state(More)
We study the wavelength scaling of high harmonic generation efficiency with visible driver wavelengths in the transition between the tunneling and the multiphoton ionization regimes where the Keldysh parameter is around unity. Our experiment shows a less dramatic wavelength scaling of efficiency than the conventional case for near- and mid-IR driver(More)
The generation of dissipative cavity solitons is one of the most intriguing features of microresonator-based Kerr frequency combs, enabling effective mode locking of comb modes and synthesis of ultrafast pulses. With the Lugiato–Lefever model, here, we conduct detailed theoretical investigations on the transient dynamics of dissipative cavity solitons and(More)
  • 1