Learn More
The recent advancement of motion recognition using Microsoft Kinect stimulates many new ideas in motion capture and virtual reality applications. Utilizing a pattern recognition algorithm, Kinect can determine the positions of different body parts from the user. However, due to the use of a single-depth camera, recognition accuracy drops significantly when(More)
A computational model of the entire cardiovascular system is established based on multi-scale modeling, where the arterial tree is described by a one-dimensional model coupled with a lumped parameter description of the remainder. The resultant multi-scale model forms a closed loop, thus placing arterial wave propagation into a global hemodynamic(More)
BACKGROUND Cerebral hyperperfusion syndrome develops in a small subset of patients following carotid artery surgery (CAS) performed to treat severe carotid artery stenosis. This syndrome has been found to have a close correlation with cerebral hyperperfusion occurring after CAS. The purpose of this study is to investigate whether and how the anatomy of the(More)
OBJECTIVE A sufficient understanding of patients' cardiovascular status is necessary for doctors to make the best decisions with regard to the treatment of cardiovascular disease; however, it is often not available because of the limitation of clinical measurements. The objective of this study was to examine whether cardiovascular function can be assessed(More)
In this paper, we investigate the effects of the hydrocarbon chain length of lipid molecules on the permeation process of small molecules through lipid bilayers. We perform molecular-dynamics simulations using three kinds of lipid molecules with different chain length: dilauroylphosphatidylcholine, dimyristoylphosphatidylcholine, and(More)
In the medical ultrasound field, microbubbles have recently been the subject of much interest. Controlling actively the effect of the microbubbles, a novel therapeutic method has been investigated. In this paper, our works on high intensity focused ultrasound (HIFU) lithotripsy with cavitating microbubbles are reviewed and the cavitation detection method to(More)
Deformation, orientation and internal flow of lipid bilayer vesicles in linear shear flows are investigated using phase contrast microscopy. We construct a rotating-cylinder apparatus, which can generate a linear shear flow with constant shear rates. Vesicles are prepared from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) by the gentle hydration method.(More)
Cloud cavitation is potentially the most destructive form of cavitation. When the cloud cavitation is acoustically forced into a collapse, it has the potential to concentrate a very high pressure, more than 100 times the acoustic pressure, at its center. We experimentally investigate a method to control the collapse of high intensity focused ultrasound(More)
In this paper, simulations for needle insertion were performed by using a novel Eulerian hydrocode FEM, which was adaptive for large deformation and tissue fracture. We also performed experiments for the same needle insertion with silicon rubbers and needles, which had conical tips of different angles in order to investigate the accuracy of the simulations.(More)
A variety of methods have been proposed to noninvasively assess arterial stiffness using single or multiple oscillometric cuffs. A common pitfall of most of such methods is that the individual-specific accuracy of assessment is not clearly known due to an insufficient understanding of the relationships between the characteristics of cuff oscillometry and(More)