Learn More
BACKGROUND Numerous proteins can be converted to amyloid-like fibrils to increase cytotoxicity and induce apoptosis, but the methods generally require a high concentration of protein, vigorous shaking, or fibril seed. As well, the detailed mechanism of the cytotoxic effects is not well characterized. In this study, we have developed a novel process to(More)
Retinoic acid (RA)-elicited signaling has been shown to play critical roles in development, organogenesis, and the immune response. RA regulates expression of Alzheimer's disease (AD)-related genes and attenuates amyloid pathology in a transgenic mouse model. In this study, we investigated whether RA can suppress the production of amyloid-β (Aβ) through(More)
BACKGROUND The application of viral elements in tumor therapy is one facet of cancer research. Recombinant capsid protein VP1 (rVP1) of foot-and-mouth disease virus has previously been demonstrated to induce apoptosis in cancer cell lines. Here, we aim to further investigate its apoptotic mechanism and possible anti-metastatic effect in murine models of(More)
F-spondin is associated with the regulation of axonal growth and the development of the nervous system. Its mechanism of action, however, is not clearly understood. In this study, we found that murine neuroblastoma Neuro-2a cells expressed a significant level of IL-6, but only trace amounts of IL-12, tumor necrosis factor alpha and nitric oxide. Knock-down(More)
BACKGROUND Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system,(More)
Virus-like particles (VLPs) are formed by the self-assembly of envelope and/or capsid proteins from many viruses. Some VLPs have been proven successful as vaccines, and others have recently found applications as carriers for foreign antigens or as scaffolds in nanoparticle biotechnology. However, production of VLP was usually impeded due to low(More)
Recombinant capsid protein VP1 (rVP1) of foot-and-mouth disease virus binds to integrins to modulate Akt/GSK3-β signaling and suppress migration/invasion and metastasis of cancer cells, but the underlying molecular mechanism is unclear. Here, we showed that the rVP1-mediated inhibition of Akt/GSK3-β signaling and cell migration/invasion was accompanied by(More)
The effects and mechanism of action of oligodeoxyribonucleotides containing CpG motif (CpG-ODNs) on neuron cells are largely unexamined. Here, we found that CpG-A ODNs but not other types of CpG-ODNs induced neurite retraction and cell apoptosis of rat embryonic neurons in a TLR9-independent manner. These effects of CpG-A ODNs were primarily due to the(More)
Tumor cells rely on aerobic glycolysis to maintain unconstrained cell growth and proliferation. Imiquimod (IMQ), a synthetic Toll-like receptor (TLR) 7/8 ligand, exerts anti-tumor effects directly by inducing cell death in cancer cells and/or indirectly by activating cellular immune responses against tumor cells. However, whether IMQ modulates glucose(More)
Accumulating evidence shows that enhancer of zeste homolog 2 (E2H2) is upregulated in a broad range of cancer types, such as breast cancer, prostate cancer, ovarian cancer, and colon cancer. Therefore, inhibiting EZH2 expression may be a promising strategy for anticancer therapy. This review focuses on the current understanding of the mechanisms underlying(More)