Learn More
The Arabidopsis microRNA156 (miR156) regulates 11 members of the SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) family by base pairing to complementary target mRNAs. Each SPL gene further regulates a set of other genes; thus, miR156 controls numerous genes through a complex gene regulation network. Increased axillary branching occurs in transgenic Arabidopsis(More)
Atherosclerosis begins as local inflammation of arterial walls at sites of disturbed flow, such as vessel curvatures and bifurcations with low shear stress. c-Jun NH₂-terminal kinase (JNK) is a major regulator of flow-dependent gene expression in endothelial cells in atherosclerosis. However, little is known about the in vivo role of JNK in low shear stress(More)
Plant carotenoid derived β-ionone has been shown to have diverse biological effects on some insect herbivores and herbivore parasitoids. In this study, Arabidopsis transgenic plants over-expressing a carotenoid cleavage dioxygenase1 gene (AtCCD1) were generated to test whether β-ionone emissions could be enhanced and used to control feeding by the crucifer(More)
Tea plants (Camellia sinensis) are used to produce one of the most important beverages worldwide. The nutritional value and healthful properties of tea are closely related to the large amounts of three major characteristic constituents including polyphenols (mainly catechins), theanine and caffeine. Although oil tea (Camellia oleifera) belongs to the genus(More)
Carotenoids and sinapate esters in Brassica napus affect the nutritional value of the seed. In this study, the B. napus regulatory gene DE-ETIOLATED1 (DET1), which is a negative regulator of light-mediated responses in plants and affects carotenoid and flavonoid pathways in tomato, was suppressed both constitutively and in a seed-specific manner by RNAi.(More)
Albino tea has received increased attention due to its brisk flavour. To identify changes in the key chemical constituents conveying important qualities to albino tea, the metabolite profiles of four albino cultivars and one green tea cultivar were analysed. Compared to the green tea control, significantly decreased contents of chlorophyll (Chl) (p<0.01),(More)
The Arabidopsis AtmiR156b gene was expressed in Brassica napus under the control of the cauliflower mosaic virus (CaMV) 35S promoter and the seed-specific napin promoter. Seed carotenoid levels, branching habit, seed yield, and seed weight were examined in the transgenic B. napus. Our results demonstrated that constitutive expression of AtmiR156b in B.(More)
In flowering plants, seed development and seed filling are intricate genetically programmed processes that correlate with changes in metabolite levels and that are spatially and temporally regulated by a complex signaling network mediated mainly by sugars and hormones. ASIL1, a member of the plant-specific trihelix family of DNA-binding transcription(More)
In this study, recalcitrance of tea plant ( Camellia sinensis) to Agrobacterium-mediated genetic transformation was investigated with an emphasis on specialized compounds in tea. Chemical constituents in tea leaves and calli were extracted into liquid Luria–Bertani (LB) medium to determine their biological activities on Agrobacterium growth, virulence, and(More)
There are six different vitamin B(6) (VB(6)) forms, pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), pyridoxal 5'-phosphate (PLP), pyridoxamine 5'-phosphate (PMP) and pyridoxine 5'-phosphate (PNP). PLP is a coenzyme required by more than 100 cellular enzymes. In spite of the importance of this vitamin, the understanding of VB(6) metabolic conversion in(More)