Learn More
Duty-cycle MAC protocols have been proposed to meet the demanding energy requirements of wireless sensor networks. Although existing duty-cycle MAC protocols such as S-MAC are power efficient, they introduce significant end-to-end delivery latency and provide poor traffic contention handling. In this paper, we present a new duty-cycle MAC protocol, called(More)
Duty cycling is a widely used mechanism in wireless sensor networks (WSNs) to reduce energy consumption due to idle listening, but this mechanism also introduces additional latency in packet delivery. Several schemes have been proposed to mitigate this latency, but they are mainly optimized for light traffic loads. A WSN, however, could often experience(More)
The use of <i>asynchronous</i> duty-cycling in wireless sensor network MAC protocols is common, since it can greatly reduce energy consumption and requires no clock synchronization. However, existing systems using asynchronous duty-cycling do not efficiently support broadcast-based communication that may be used, for example, in route discovery or in(More)
Distributed wavelet processing within sensor networks holds promise for reducing communication energy and wireless bandwidth usage at sensor nodes. Local collaboration among nodes de-correlates measurements, yielding a sparser data set with significant values at far fewer nodes. Sparsity can then be leveraged for subsequent processing such as measurement(More)
Summary form only given. Recent advances in technology have made low-cost, low-power wireless sensors a reality. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain phenomena. We propose an architecture to provide a stateless solution in sensor networks for efficient addressing and routing. We name our(More)
As wireless devices become more pervasive, mobile ad hoc networks are gaining importance, motivating the development of highly scalable ad hoc networking techniques. In this paper, we give an overview of the Safari architecture for highly scalable ad hoc network routing, and we present the design and evaluation of a specific realization of the Safari(More)
Simulation and physical implementation are both valuable tools in evaluating ad hoc network routing protocols, but neither alone is sufficient. In this paper, we present the design and implementation of a new system that allows existing simulation models of ad hoc network routing protocols to be used —without modification —to create a physical(More)
As wireless devices become more pervasive, mobile ad hoc networks are becoming increasingly important, motivating the development of highly scalable ad hoc networking techniques. In this paper, we present the design and evaluation of a novel protocol for scalable routing in ad hoc networks, as part of the Safari project. Safari leverages and integrates(More)
Simulation and physical implementation are both valuable tools in evaluating ad hoc network routing protocols, but neither alone is sufficient. In this paper, we present the design and performance of PRAN, a new system for the physical implementation of ad hoc network routing protocols that unifies these two types of evaluation methodologies. PRAN (physical(More)
Simulation and analytical models for the ultrasonic/sonic drill/corer (USDC) are described in this paper. The USDC was developed as a tool for in-situ rock sampling and analysis in support of the NASA planetary exploration program. The USDC uses a novel drive mechanism, which transfers ultrasonic vibrations of a piezoelectric actuator into larger(More)