Shu-Chuan Liao

Learn More
The effective protection of the blood-brain barrier (BBB) from tight junctions and efflux transport systems ultimately results in the limited entry of 95% of drug/gene candidates, which are potentially beneficial for central nervous system (CNS) diseases. In order to enhance the brain-specific delivery, in this study we developed a targeting carrier system,(More)
In this study, a new type of temperature sensor device was developed. The circular electrode of the thermal sensitive sensor was modified with TMT and O2 plasma to enhance the conductivity by forming a thin SnOxCy layer on the electrode surface. The Nano-Au particles were subjected to O2 plasma pretreatment to form peroxide groups on the surface. The(More)
In this study, a new room temperature type gas sensor device based on plasma deposition of tetramethyltin (TMT) and O2 organically hybridized film followed by post treatment on the deposited film was developed for improving CO gas sensitivity and distinguishing from methane, butane, and carbon monoxide gases in the test environment. Plasma deposited SnOx(More)
In this study, the antimicrobial property and food package capability of polymethylpentene (PMP) substrate with silicon oxdie (SiOx) and organic silicon (SiCxHy) stacked layers deposited by an inductively coupled plasma chemical vapor deposition system were investigated. The experimental results show that the stacked pair number of SiOx/SiCxHy on PMP is(More)
In this study, a new type of temperature sensor device was developed. The circular electrode of the thermally sensitive sensor was modified with tetramethyltin (TMT) and O2 plasma to form a thin SnOxCy conductive layer on the electrode surface. The nano-Au particles (AuNPs) were subjected to O2 plasma pretreatment to form peroxide groups on the surface. The(More)
  • 1