Shruthi K Naik

Learn More
BACKGROUND The use of oncolytic viruses for treatment of cancer marks a significant alteration in the battle between host and virus. Viruses are confronted by cellular innate immune responses and contain an armamentarium of immunomodulatory proteins that suppress innate immunity. Tumorigenesis can result in impairment of innate immune responses. Viruses(More)
Multiple myeloma is a radiosensitive malignancy that is currently incurable. Here, we generated a novel recombinant vesicular stomatitis virus [VSV(Delta51)-NIS] that has a deletion of methionine 51 in the matrix protein and expresses the human sodium iodide symporter (NIS) gene. VSV(Delta51)-NIS showed specific oncolytic activity against myeloma cell lines(More)
Current therapy for multiple myeloma is complex and prolonged. Antimyeloma drugs are combined in induction, consolidation and/or maintenance protocols to destroy bulky disease, then suppress or eradicate residual disease. Oncolytic viruses have the potential to mediate both tumor debulking and residual disease elimination, but this curative paradigm remains(More)
Multiple myeloma is a radiosensitive malignancy that is currently incurable. Here, we generated a novel recombinant vesicular stomatitis virus [VSV( 51)-NIS] that has a deletion of methionine 51 in the matrix protein and expresses the human sodium iodide symporter (NIS) gene. VSV( 51)-NIS showed specific oncolytic activity against myeloma cell lines and(More)
Multiple myeloma (MM) is an incurable malignancy of plasma secreting B cells disseminated in the bone marrow. Successful utilization of oncolytic virotherapy for myeloma treatment requires a systemically administered virus that selectively destroys disseminated myeloma cells in an immune-competent host. Vesicular stomatitis virus (VSV)-expressing(More)
Simple, inductive mathematical models of oncolytic virotherapy are needed to guide protocol design and improve treatment outcomes. Analysis of plasmacytomas regressing after a single intravenous dose of oncolytic vesicular stomatitis virus in myeloma animal models revealed that intratumoral virus spread was spatially constrained, occurring almost(More)
Systemically administered oncolytic viruses have the ability to cause tumor destruction through the expansion and coalescence of intratumoral infectious centers. Efficacy is therefore dependent upon both the density and intratumoral distribution of virus-infected cells achieved after initial virus infusion, and delivery methods are being developed to(More)
The family of G protein-coupled receptors that includes receptors for motilin, ghrelin, and growth hormone secretagogue has substantial potential importance as drug targets. Understanding of the molecular basis of hormone binding and receptor activation should provide insights that are helpful in the development of such drugs. We previously examined the(More)
VSV-IFNβ-NIS is a novel recombinant oncolytic vesicular stomatitis virus (VSV) with documented efficacy and safety in preclinical murine models of cancer. To facilitate clinical translation of this promising oncolytic therapy in patients with disseminated cancer, we are utilizing a comparative oncology approach to gather data describing the safety and(More)