Shreyas S. Vasanawala

Learn More
PURPOSE To develop a method that combines parallel imaging and compressed sensing to enable faster and/or higher spatial resolution magnetic resonance (MR) imaging and show its feasibility in a pediatric clinical setting. MATERIALS AND METHODS Institutional review board approval was obtained for this HIPAA-compliant study, and informed consent or assent(More)
Fully refocused steady-state free precession (SSFP) is a rapid, efficient imaging sequence that can provide diagnostically useful image contrast. In SSFP, the signal is refocused midway between excitation pulses, much like in a spin-echo experiment. However, in SSFP, the phase of the refocused spins alternates for each resonant frequency interval equal to(More)
PURPOSE Parallel imaging allows the reconstruction of images from undersampled multicoil data. The two main approaches are: SENSE, which explicitly uses coil sensitivities, and GRAPPA, which makes use of learned correlations in k-space. The purpose of this work is to clarify their relationship and to develop and evaluate an improved algorithm. THEORY AND(More)
Refocused steady-state free precession (SSFP) imaging sequences have recently regained popularity as faster gradient hardware has allowed shorter repetition times, thereby reducing SSFP's sensitivity to off-resonance effects. Although these sequences offer fast scanning with good signal-to-noise efficiency, the "transient response," or time taken to reach a(More)
MRI using receiver arrays with many coil elements can provide high signal-to-noise ratio and increase parallel imaging acceleration. At the same time, the growing number of elements results in larger datasets and more computation in the reconstruction. This is of particular concern in 3D acquisitions and in iterative reconstructions. Coil compression(More)
The high prevalence of osteoarthritis continues to demand improved accuracy in detecting cartilage injury and monitoring its response to different treatments. MRI is the most accurate noninvasive method of diagnosing cartilage lesions. However, MR imaging of cartilage is limited by scan time, signal-to-noise ratio (SNR), and image contrast. Recently, there(More)
Familiarity with basic sequence properties and their trade-offs is necessary for radiologists performing abdominal magnetic resonance (MR) imaging. Acquiring diagnostic-quality MR images in the pediatric abdomen is challenging due to motion, inability to breath hold, varying patient size, and artifacts. Motion-compensation techniques (eg, respiratory(More)
A new, fast, spectrally selective steady-state free precession (SSFP) imaging method is presented. Combining k-space data from SSFP sequences with certain phase schedules of radiofrequency excitation pulses permits manipulation of the spectral selectivity of the image. For example, lipid and water can be resolved. The contrast of each image depends on both(More)
Refocused steady-state free precession (SSFP) is limited by its high sensitivity to local field variation, particularly at high field strengths or the long repetition times (TRs) necessary for high resolution. Several methods have been proposed to reduce SSFP banding artifact by combining multiple phase-cycled SSFP acquisitions, each differing in how(More)
PURPOSE To develop a method for fast pediatric 3D free-breathing abdominal dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) and investigate its clinical feasibility. MATERIALS AND METHODS A combined locally low rank parallel imaging method with soft gating is proposed for free-breathing DCE MRI acquisition. With Institutional Review Board(More)